
Developer Documentation

Nuxeo EP 5.4

Table of Contents

1. Technical Documentation Center - Nuxeo Enterprise Platform 5.4 . 5
1.1 Overview and Architecture . 6
1.2 Overview . 7
1.3 Architecture . 10

1.3.1 Architecture overview . 10
1.3.2 About the content repository . 13

1.3.2.1 VCS Architecture . 22
1.3.3 Platform features quick overview . 31
1.3.4 Component model overview . 33
1.3.5 API and connectors . 37
1.3.6 UI frameworks . 40
1.3.7 Deployment options . 42
1.3.8 Performance management for Nuxeo EP . 47

1.4 Installation and Administration . 53
1.4.1 Hardware and Software requirements . 54
1.4.2 Installation . 56

1.4.2.1 Install and set up related software . 60
1.4.2.2 Install the application as a Windows service . 62
1.4.2.3 Configuring your Nuxeo application as a daemon on Debian . 67

1.4.3 Setup . 70
1.4.3.1 Recommended configurations . 74
1.4.3.2 Configuration parameters index . 76
1.4.3.3 Configuration examples . 81
1.4.3.4 Configuration templates . 81

1.4.4 Database . 82
1.4.4.1 Configuring PostgreSQL . 82
1.4.4.2 Configuring Oracle . 89
1.4.4.3 Configuring MS SQL Server . 90
1.4.4.4 Connecting Nuxeo to the database . 92

1.4.5 Authentication, users and groups . 95
1.4.5.1 Using a LDAP directory . 97
1.4.5.2 Using CAS2 authentication . 102
1.4.5.3 Using OAuth . 105
1.4.5.4 Using Shibboleth . 108

1.4.6 HTTP and HTTPS reverse-proxy configuration . 112
1.4.7 Advanced configuration . 115

1.4.7.1 Adding custom templates . 115
1.4.7.2 JDBC . 115
1.4.7.3 VCS Configuration . 115

1.4.8 Server start and stop . 119
1.4.8.1 nuxeoctl and Control Panel usage . 122

1.4.9 Monitoring . 124
1.4.10 Nuxeo Shell (admin's best friend) . 126

1.4.10.1 Shell Command Index . 129
1.4.10.1.1 Built-in Commands . 129
1.4.10.1.2 File System Commands . 131
1.4.10.1.3 Nuxeo Server Commands . 134
1.4.10.1.4 Nuxeo Automation Commands . 144
1.4.10.1.5 Configuration Commands . 168

1.4.10.2 Shell Batch Mode . 169
1.4.11 Backup and restore . 170
1.4.12 Import a file system . 170
1.4.13 Upgrading your Nuxeo Version . 171

1.4.13.1 Upgrade to 5.4.2 with Oracle . 172
1.4.13.2 Upgrade from 5.3.2 to 5.4.0 . 172

1.4.13.2.1 From the old workflow system to the new 5.4 workflow system . 173
1.4.13.2.2 Upgrade from 5.3.2 to 5.4.0 with JBoss 5 . 173

1.4.13.3 Upgrade from 5.3.1 to 5.3.2 . 178
1.4.13.4 Upgrade from 5.3.1 with MySQL to 5.3.2 . 179
1.4.13.5 Upgrade from 5.3.0 to 5.3.1 . 181
1.4.13.6 Upgrade from 5.1.6 with JCR + PostgreSQL to 5.2.0 . 183
1.4.13.7 Upgrade from 5.1.2 to 5.1.3 . 184

1.5 Customization and Development . 184
1.5.1 Learning to customize Nuxeo EP . 186
1.5.2 Document types . 187
1.5.3 Document, form and listing views . 194

1.5.3.1 Layouts (forms and views) . 194

1.5.3.1.1 Manage layouts . 195
1.5.3.1.2 Document layouts . 202
1.5.3.1.3 Layout display . 203
1.5.3.1.4 Standard widget types . 204
1.5.3.1.5 Custom templates . 205
1.5.3.1.6 Custom widget types . 217
1.5.3.1.7 Generic layout usage . 224

1.5.3.2 Content views . 224
1.5.3.2.1 Custom Page Providers . 230
1.5.3.2.2 Page Providers without Content Views . 231

1.5.3.3 Views on documents . 232
1.5.4 Versioning . 234
1.5.5 User Actions (links, buttons, icons, tabs) . 235
1.5.6 Events and Listeners . 238

1.5.6.1 Scheduling periodic events . 243
1.5.7 Tagging . 244
1.5.8 Directories and Vocabularies . 245
1.5.9 Adding custom LDAP fields to the UI . 250
1.5.10 Publisher service . 253
1.5.11 Querying and Searching . 257

1.5.11.1 NXQL . 257
1.5.11.2 Fulltext queries . 261
1.5.11.3 Advanced search . 262
1.5.11.4 Faceted Search . 267
1.5.11.5 Smart search . 276

1.5.12 Security Policy Service . 279
1.5.13 Nuxeo Theme engine . 282
1.5.14 Nuxeo UI Frameworks . 282

1.5.14.1 Seam and JSF webapp overview . 282
1.5.14.2 GWT Integration . 283
1.5.14.3 Extending The Shell . 291

1.5.14.3.1 Shell Features . 291
1.5.14.3.2 Shell Commands . 294
1.5.14.3.3 Shell Namespaces . 300
1.5.14.3.4 Shell Documentation . 301

1.5.14.4 WebEngine (JAX-RS) . 302
1.5.14.4.1 Session And Transaction Management . 316
1.5.14.4.2 WebEngine Tutorials . 319

1.5.14.5 Nuxeo Android Connector . 355
1.5.14.5.1 Nuxeo Automation client . 356
1.5.14.5.2 Android Connector and Caching . 357
1.5.14.5.3 Android Connector additional Services . 358
1.5.14.5.4 DocumentProviders in Android Connector . 359
1.5.14.5.5 Android SDK Integration . 362
1.5.14.5.6 Nuxeo Layout in Android . 364
1.5.14.5.7 SDK provided base classes . 364

1.5.14.6 Nuxeo Flex Connector . 365
1.5.14.6.1 AMF Mapping in Nuxeo . 366
1.5.14.6.2 Build and deploy Nuxeo Flex Connect . 368
1.5.14.6.3 Using Flex Connector . 371

1.5.15 Extending Nuxeo . 374
1.5.15.1 The Nuxeo Plugin model . 375
1.5.15.2 Adding a new UI block in Nuxeo DM . 375
1.5.15.3 Making a connector . 375
1.5.15.4 Integrating with JBoss AOP . 375
1.5.15.5 Integrating with JPA . 377

1.5.16 Updating your application using the Admin Center (web interface) . 379
1.5.16.1 Register your Nuxeo instance . 382
1.5.16.2 Install a new package on your instance . 386

1.5.16.2.1 Semantic Entities Installation and Configuration . 389
1.5.16.3 Uninstall a package . 391
1.5.16.4 Update your instance with Studio configuration . 392

1.5.17 Using Nuxeo as a service platform . 393
1.5.17.1 ECM Services in Nuxeo EP . 396
1.5.17.2 WebServices . 397
1.5.17.3 Content Automation . 397

1.5.17.3.1 Operations Index . 401
1.5.17.3.2 Contributing an Operation . 428
1.5.17.3.3 Contributing an Operation Chain . 433
1.5.17.3.4 REST API . 434
1.5.17.3.5 REST Operation Filters . 443
1.5.17.3.6 Using the REST API - Examples . 444

1.5.17.4 OpenSocial, OAuth and Nuxeo EP . 458
1.5.17.4.1 OpenSocial configuration . 465

1.5.17.5 Repository access . 465
1.5.17.5.1 CMIS for Nuxeo . 466
1.5.17.5.2 WebDAV . 469
1.5.17.5.3 WSS before Nuxeo 5.4.2 . 469

1.5.18 Packaging . 473
1.5.18.1 Packaging from sources . 473
1.5.18.2 Packaging a Nuxeo plugin . 473

1.5.19 Navigation URLs . 477
1.5.20 Dev Cookbook . 480

1.5.20.1 How-to create an empty bundle . 480
1.5.20.2 How-to implement an Action . 488

1.5.21 Drag and Drop Service for Content Capture (HTML5-based) . 495
1.6 Contributing to Nuxeo . 498

1.6.1 Is source code needed? . 501
1.6.2 Creating Packages for the Marketplace . 501

1.6.2.1 Package Manifest . 504
1.6.2.2 Scripting Commands . 505
1.6.2.3 Package Web Page . 511
1.6.2.4 Wizard Forms . 511
1.6.2.5 Package Example . 511

1.7 Nuxeo Distributions . 513
1.7.1 Available installers . 514

 Nuxeo Enterprise Platform 5.4 Documentation

5
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

Technical Documentation Center - Nuxeo Enterprise
Platform 5.4

Welcome to the Technical documentation

Center of Nuxeo applications based on

Nuxeo Enterprise Platform 5.4
Overview and Architecture
Documentation presenting Nuxeo Enterprise Platform
architecture.

Using Nuxeo as a service platform
Documentation about the services provided by Nuxeo
Platform

Extending Nuxeo
Documentation about the extension capabilities offered by
Nuxeo Enterprise Platform.

Developer Guide
Resources for developpers that want to use or extend
Nuxeo.

Installation and Administration Guide
Documentation about installing and administrating a
Nuxeo Server.

Nuxeo UI Frameworks
Resources about Nuxeo UI technologies

Nuxeo Distributions
Documentation about Nuxeo distributions and associated
tools.

Download

 .Download this documentation in PDF

License
This documentation is copyrighted by Nuxeo and published under the Creative Common BY-SA license. More details on the Nuxeo

 page.documentation license

http://doc.nuxeo.com/x/GATF
https://doc.nuxeo.com/download/attachments/8684602/Nuxeo_EP_5.4_technical_documentation.pdf?version=16&modificationDate=1360604360433&api=v2
http://doc.nuxeo.com/display/MAIN/Nuxeo+documentation+license
http://doc.nuxeo.com/display/MAIN/Nuxeo+documentation+license

 Nuxeo Enterprise Platform 5.4 Documentation

6
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

• view changeupdated Mar 31, 2016

• view changeupdated Mar 31, 2016

• view changeupdated Mar 31, 2016

• view changeupdated Mar 31, 2016

• view changeupdated Mar 31, 2016

• view changeupdated Mar 31, 2016

• view changeupdated Mar 31, 2016

• view changeupdated Mar 31, 2016

• view changeupdated Mar 31, 2016

• view changeupdated about 5 hours ago

Recently updated

Recently Updated
Technical Documentation Center - Nuxeo Enterprise Platform 5.4

Upgrade from 5.1.2 to 5.1.3

Upgrade from 5.1.6 with JCR + PostgreSQL to 5.2.0

Upgrade from 5.3.0 to 5.3.1

Upgrade from 5.3.1 with MySQL to 5.3.2

Upgrade from 5.3.1 to 5.3.2

Upgrade from 5.3.2 to 5.4.0 with JBoss 5

From the old workflow system to the new 5.4 workflow system

Upgrade from 5.3.2 to 5.4.0

Upgrade to 5.4.2 with Oracle

Overview and Architecture
This chapter presents an overview of Nuxeo Enterprise Platform. This overview also applies to the applications based on Nuxeo EP, such as Nux

 (DM), (DAM) or (CMF).eo Document Management Nuxeo Digital Asset Management Nuxeo Case Management Framework

You should read this if:

you want to understand Nuxeo application's architecture,
you want to extend Nuxeo EP or a Nuxeo EP-based application,
you want to integrate Nuxeo EP or a Nuxeo EP-based application into your existing applications.

This chapter presents the topics below:

Nuxeo EP - a platform for ECM
A quick overview of Nuxeo EP concepts

Architecture overview
Main concepts on Nuxeo architecture

Platform features quick overview
Presentation of the main features available in Nuxeo EP

About the content repository
Quick overview of Nuxeo document repository and associated features

UI frameworks
Overview of UI frameworks integrated inside Nuxeo EP

Component model overview
Introduction to the Nuxeo Component and Service model

API and connectors
Presents how you can integrate Nuxeo with external applications.

Deployment options
Presents the different configurations that are available for Nuxeo EP deployment.

http://doc.nuxeo.com/x/GATF
https://doc.nuxeo.com/pages/diffpagesbyversion.action?pageId=7537033&selectedPageVersions=9&selectedPageVersions=8
https://doc.nuxeo.com/pages/diffpagesbyversion.action?pageId=18449465&selectedPageVersions=5&selectedPageVersions=4
https://doc.nuxeo.com/pages/diffpagesbyversion.action?pageId=3343540&selectedPageVersions=25&selectedPageVersions=24
https://doc.nuxeo.com/pages/diffpagesbyversion.action?pageId=3868597&selectedPageVersions=42&selectedPageVersions=41
https://doc.nuxeo.com/pages/diffpagesbyversion.action?pageId=14255788&selectedPageVersions=2&selectedPageVersions=1
https://doc.nuxeo.com/pages/diffpagesbyversion.action?pageId=14255796&selectedPageVersions=2&selectedPageVersions=1
https://doc.nuxeo.com/pages/diffpagesbyversion.action?pageId=14255804&selectedPageVersions=2&selectedPageVersions=1
https://doc.nuxeo.com/pages/diffpagesbyversion.action?pageId=14255817&selectedPageVersions=2&selectedPageVersions=1
https://doc.nuxeo.com/pages/diffpagesbyversion.action?pageId=14255825&selectedPageVersions=2&selectedPageVersions=1
https://doc.nuxeo.com/pages/diffpagesbyversion.action?pageId=8684739&selectedPageVersions=8&selectedPageVersions=7

 Nuxeo Enterprise Platform 5.4 Documentation

7
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

Performance management for Nuxeo EP
Presents how we management performance tuning and testing for Nuxeo EP.

Overview
Nuxeo Enterprise Platform (Nuxeo EP) is a platform for building ECM applications. It provides the technical infrastructure and the high level
services needed to build customized ECM applications.

In order to be flexible and easily adaptable, Nuxeo EP is composed of small software parts that can be assembled together to build an application.
These software parts (called "Bundles" in Nuxeo) contain:

Services: to provide the features needed to manage your information;
Components: to implement, configure and extend the services;
Presentation frameworks and UI building blocks: to provide the user interface on top of the service stack.

You can get more details by reading the page.Component model overview

One of the key features of our platform is that most components are configurable and extensible. This gives you full control to extend and
configure the existing services in order to fulfill the specific needs of your projects.

Assembling building blocks from the platform

Inside the platform, we organize the software parts into several families, or layers:

the layer defines all low level components and services that deal with Document storage;Core
(Document repository, Security service, Life Cycle management, ...)

the layer includes components and services that provide additional services on top of the core layer;Services
(User management, directory management, mime-types detection, ...)

the provides an integrated framework for the several presentation technologies Nuxeo EP supports;UI framework
(JSF/Seam, JAX-RS/WebEngine, GWT, Flex/AMF, ...)

the layer contains high level ECM services that also provide some default UIFeatures
(Workflow engine, Subscriptions, Picture management, ...).

This layer organization is visible inside the source repository and inside the dependency management tree.

Nuxeo Distribution is the assembly tool we use to extract and packages components from Nuxeo EP into a runnable application. This tool,
based on maven, takes care of the dependencies management and adds the needed default configuration so that the assembled application can
easily be run.

Nuxeo Distribution provides an automated and safe way to accomplish the following tasks:

select bundles from the platform according to your need,
select all the required (dependent) bundles,
associate default configuration (document types, workflows, life-cycles, ...),
generate WAR or EAR,

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

8
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

associate storage configuration (storage type, database type, ...),
if needed generate a ready-to run package including the application server (Tomcat, JBoss ...).

Nuxeo provides several default distributions:

Nuxeo CAP: Nuxeo CAP stands for Content Application Platform. Nuxeo CAP basically includes all the basic features to manage
Documents and navigate inside the content repository. This distribution is used as a basis for most distributions: for example CAP
contains the infrastructure used by Nuxeo DM, Nuxeo CMF and Nuxeo DAM (see below).

Nuxeo Core Server: Nuxeo Core sever is a light distribution of Nuxeo EP. It mainly includes the Document Repository, the Audit service,
Security and User management services, CMIS connector. This means Core Server is basically a CMIS repository.

Nuxeo DM: this distribution is the historical distribution of Nuxeo EP and all features for managing Documents: navigation and search,
workflows, preview and annotations, picture management, etc.
Use the to learn more about this distribution.Document Management - User Guide

Nuxeo DAM: this distribution focuses on Digital Asset Management
You can consult the for more information.Digital Asset Management User Guide

Nuxeo Case Management Framework: this framework enables to build applications dedicated to the manipulation and distribution of
cases.
You can consult the for more information.Nuxeo CMF User Guide

Nuxeo Correspondence Management: this distribution manages inbound and outbound correspondence

You can get more information about by reading the .Nuxeo-Distribution dedicated documentation

Using Nuxeo Enterprise Platform

As a platform, Nuxeo EP can be used in several different ways:

Use a pre-built application that you customize,
Create your own distribution from Nuxeo EP,
Integrate your application with Nuxeo EP.

Turn-Key pre-built ECM applications

We provide several pre-built ECM applications on top of Nuxeo EP: Nuxeo DM, Nuxeo DAM, Nuxeo Correspondence...
These are distributions of the Nuxeo platform that include all needed services, UI and configuration to provide a ready-to-run web application to
do Document Management, Digital Asset Management, Correspondence Management...
These distributions are the best solution to quick-start testing our ECM platform.
Even if these distributions are ready to run and include a lot of default configuration, they can still be customized.

In a lot of cases, a project's implementation is built on top of one of the existing default distributions and just modifies what is needed:

define custom Document types,
customize workflows,
customize security policies,
adapt UI themes,
add or remove buttons,
remove unneeded features and services,
add additional services and features.

http://doc.nuxeo.com/x/GATF
https://doc.nuxeo.com/pages/createpage.action?spaceKey=DMDOC54&title=Document+Management+-+User+Guide
https://doc.nuxeo.com/pages/createpage.action?spaceKey=DAMDOC1x&title=Digital+Asset+Management+User+Guide
https://doc.nuxeo.com/display/CMDOC1x/Nuxeo+CMF+User+Guide
https://doc.nuxeo.com/display/CORG/Compiling+Nuxeo+from+sources

 Nuxeo Enterprise Platform 5.4 Documentation

9
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

Create a custom Nuxeo distribution

A lot of default distributions, and in particular Nuxeo DM, come with a lot of features. We choose to do so in order to make platform testing and
evaluation easier. But in a lot of projects, part of the features included in DM are not needed.

Of course, you can disable the unwanted features with some XML configuration. But in some cases, it is more efficient to build your own
distribution.
Nuxeo Distribution is an open system and you can use it to build your own distribution. This allows you to precisely select the bundles you need
for your project:

don't include bundles that you don't need,
add bundles that are not included in any default distribution,
add project and environment specific configurations.

Building your own distribution has an other advantage: since you can assemble your ECM application server with one command line, you can
easily:

integrate it into an Integration Chain,
have several profiles (dev, pre-prod, prod).

Integrate your application with Nuxeo EP

The third way of using Nuxeo EP is to integrate it with an existing application.
Depending on your requirements, you may choose different approaches.

Deploy your application inside Nuxeo Platform

The first solution is to deploy your existing Web Application inside the Nuxeo server.
Basically, this means that you simply have to package your Web Application in Nuxeo's way and your application will have full access to the entire
Nuxeo EP framework (components and services).

Use Nuxeo EP as a service platform

The second solution is to use Nuxeo EP as a service provider: your application uses Nuxeo's ECM services remotely.
Depending on the technology you use in your application, you may use Nuxeo's services

via Java remoting (RMI)
or via webservices (JAX-RS or JAX-WS).

Embed Nuxeo services into your application

The last solution is to embed a part of Nuxeo EP inside your application and use Nuxeo's services as a Java Library.

For that you can use that can deploy a minimal Nuxeo environment so that Nuxeo's services can be run. Because Nuxeo EP is verynuxeo-client
modular, you can have a very small Nuxeo stack and embed Nuxeo's services even in a very small java application.

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

10
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

Architecture
Architecture overview
About the content repository
Platform features quick overview
Component model overview
API and connectors
UI frameworks
Deployment options
Performance management for Nuxeo EP

Architecture overview

Technologies in Nuxeo EP

100% Java Based

Nuxeo EP is 100% built on top of Java: as long as a JVM (Java Virtual Machine) is available in your target environment, you should be able to run
Nuxeo EP.

Nuxeo EP requires at least Java 5 (we use Generics and Annotation) and is validated against Sun JDK version 5 and 6.

POJO and JEE

The Nuxeo platform is designed so that you can run services and components in various environments:

on bare Java,
in a servlet container,
in a JEE container (EAR including EJB3 bindings).

Nuxeo components and services will leverage the Java EE infrastructure if available: JTA transaction management, JAAS security, EJB3
resource pooling...

OSGi inspired component model

Nuxeo components and services are packaged like an OSGi Bundle.

Each software part of Nuxeo EP is packaged in a jar that declares:

its dependencies,
the components provided,
the services provided.

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

11
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

Nuxeo extends the OSGi model to include needed features like service binding and extension points.

Leverage existing open source frameworks

Nuxeo integrates many existing open source frameworks. When something that works exists in open source we prefer to integrate it rather than
rewrite it.

We integrate the following open source frameworks:

JBPM: the main process engine,
Drools: for rules management,
JackRabbit: can be used as the Nuxeo Core backend if JCR compliancy is needed (not the default backend),
Seam: used for the Web Component model in the JSF UI toolkit,
Shindig: used as the infrastructure provider for OpenSocial,
Jena RDF: the RDF provider.

Main design goals

The main design goals of the Nuxeo EP architecture are to provide:

powerful and clean solutions to configure and extend the platform,
agility to deploy and integrate it in a complex environment.

These 2 points are the main reasons for the Bundles/Components/Service model we use.

The next paragraph will present how we achieve these goals.

10,000 foot view

From a 10,000 foot view, the Nuxeo platform can be separated in 4 layers:

Nuxeo Runtime

Nuxeo Runtime provides the component, service and deployment model used to make the platform run.

Nuxeo Runtime is based on the OSGi component model but adds some features like:

a service lookup and binding system,
an extension point system,
a deployment system.

Nuxeo components and services run on top of Nuxeo Runtime. As a consequence, Nuxeo EP can run in any environment that is supported by
Nuxeo Runtime.

This basically means that Nuxeo Runtime is also an abstraction layer that helps Nuxeo EP run in different environments.

Nuxeo Core

The Nuxeo Core layer contains all the services and components required to manage document storage.

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

12
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

Nuxeo Core can be used independently as an embeddable Document Repository.

Nuxeo Services

Nuxeo Services contains content management services and components:

workflows,
audit service,
comment service,
...

All these services and components have some common points:

they almost all use Nuxeo Core (because they provide services bound to Documents),
they are designed as generic and as configurable as possible,
they don't depend on any UI layer.

If you don't want to use the UIs provided by Nuxeo, but simply do service calls from your application, you will use the Nuxeo services layer
directly.

The gadget below lists the services deployed in the DM distribution :
Error rendering macro 'gadget' : Error rendering gadget [http://explorer.nuxeo.org/nuxeo/site/gadgets/services/services.xml]

Nuxeo client technologies

On top of the service layer, Nuxeo EP provides:

several client technology frameworks (Web 2.0, RichClient, RIA ...),
reusable building blocks.

For example, when using JSF/Seam web technology, Nuxeo EP provides ready to use screens and buttons for most of the features and services
of the platform.

This allows you to easily assemble a Web Application without having to rebuild everything from scratch or deconstruct a pre-built monolithic
application.

Easy customization and integration

One of the main goals of Nuxeo EP is to provide an easy and clean way to customize the platform for your application needs.

For that, Nuxeo Runtime provides an system that can be used to:Extension Point

configure services and components (XML configuration),
extend existing services and components (Java code or scripting).

The extension point model is used everywhere inside Nuxeo EP. This means there is only one model for all components and services.

You use the same model to configure storage layers as to configure buttons in the Web UI.

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

13
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

In the current version of Nuxeo EP, there are about 200 extension points available.

This means:

you can really do a lot with simple configuration;
you can do customization that can be upgraded (extension points are maintained with the platform).

To leverage the Extension Points capabilities, you can either:

write XML configuration,
use Nuxeo Studio to generate the XML for you.

In terms of customization, the most common tasks include:

define custom schemas and Document types (supported by Nuxeo Studio),
define custom forms (supported by Nuxeo Studio),
define custom life-cycles (supported by Nuxeo Studio),
enforce business policies:

use content automation (supported by Nuxeo Studio),
write custom listener scripts,

customize Web UI:
make your own branding (supported by Nuxeo Studio),
add buttons, tabs, links, views (supported by Nuxeo Studio),
build your own theme via the ThemeManager,

add workflows.

If you need to extend Nuxeo EP or integrate it with existing applications, our platform also provides a lot of advantages:

Nuxeo EP provides several APIs to access services (Java, RMI, SOAP, JAX-RS, ...),
Nuxeo EP is based on standards (OSGi, JTA, JCA, JAAS, EJB3, JAX-RS, JAX-WS ...),
You can use extension points to inject your code into the platform.

The last point is probably the most important.
Thanks to the extension point system, you can write you business code and inject it cleanly in the right component of Nuxeo EP:

no need to hack to make it run,
your custom code will be based on maintained extension points and interfaces and will be able to be easily upgraded.

About the content repository
In this section:

Document in Nuxeo
Document vs File
Schemas
Document Types
Life Cycle

Security management
ACL model
Security Policies

Indexing and Query
Indexing
Query support

Other repository features
Versioning
Proxies

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

14
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

Event systems
Repository Storage

Nuxeo Visible Content Store (VCS)
Apache Jackrabbit Backend

Advanced features
Lazy Loading and binary files streaming
Transaction management
DocumentModel Adapter

Document in Nuxeo

Document vs File

Inside the Nuxeo Repository, a document is not just a simple file.

A document is defined as a set of fields.

Fields can be of several types:

simple fields (String, Integer, Boolean Date, Double),
simple lists (multi-valued simple field),
complex type.

A file is a special case of a complex field that contains:

a binary stream,
a filename,
a mime-type,
a size.

As a result, a Nuxeo Document can contain 0, 1 or several files.

In fact, inside the Nuxeo repository, even a Folder is seen as a document because it holds meta-data (title, creation date, creator, ...).

Schemas

Document structure is defined using XSD schemas.

XSD schemas provide:

a standard way to express structure,
a way to define meta-data blocks.

Each document type can use one or several schemas.

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

15
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

Here is a simple example of a XSD schema used in Nuxeo Core (a subset of Dublin Core):

<?xml version="1.0"?>
<xs:schema
 targetNamespace="http://www.nuxeo.org/ecm/schemas/dublincore/"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:nxs="http://www.nuxeo.org/ecm/schemas/dublincore/">

 <xs:simpleType name="subjectList">
 <xs:list itemType="xs:string"/>
 </xs:simpleType>
 <xs:simpleType name="contributorList">
 <xs:list itemType="xs:string"/>
 </xs:simpleType>
 <xs:element name="title" type="xs:string"/>
 <xs:element name="description" type="xs:string"/>
 <xs:element name="subjects" type="nxs:subjectList"/>
 <xs:element name="rights" type="xs:string"/>
 <xs:element name="source" type="xs:string"/>
 <xs:element name="coverage" type="xs:string"/>
 <xs:element name="created" type="xs:date"/>
 <xs:element name="modified" type="xs:date"/>
 <xs:element name="issued" type="xs:date"/>
 <xs:element name="valid" type="xs:date"/>
 <xs:element name="expired" type="xs:date"/>
 <xs:element name="format" type="xs:string"/>
 <xs:element name="language" type="xs:string"/>
 <xs:element name="creator" type="xs:string"/>
 <xs:element name="contributors" type="nxs:contributorList"/>
</xs:schema>

Document Types

Inside the Nuxeo Repository, each document has a Document Type.

A document type is defined by:

a name,
a set of schemas,
a set of facets,
a base document type.

Document types can inherit from each other.

By using schemas and inheritance you can carefully design how you want to reuse the meta-data blocks.

At pure storage level, the Facets are simple declarative markers. These marker are used by the repository and other Nuxeo EP services to define
how the document must be handled.

Default facets include:

Versionnable,
HiddenInNavigation,
Commentable,
Folderish,
...

Here are some Document Types definition examples:

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

16
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

<doctype name="File" extends="Document">
 <schema name="common"/>
 <schema name="file"/>
 <schema name="dublincore"/>
 <schema name="uid"/>
 <schema name="files"/>
 <facet name="Downloadable"/>
 <facet name="Versionable"/>
 <facet name="Publishable"/>
 <facet name="Indexable"/>
 <facet name="Commentable"/>
</doctype>

<doctype name="Folder" extends="Document">
 <schema name="common"/>
 <schema name="dublincore"/>
 <facet name="Folderish"/>
 <subtypes>
 <type>Folder</type>
 <type>File</type>
 <type>Note</type>
 </subtypes>
</doctype>

At UI level, Document Types defined in the Repository are mapped to high level document types that have additionnal attributes:

display name,
category,
icon,
visibility,
...

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

17
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

<type id="Folder">
 <label>Folder</label>
 <icon>/icons/folder.gif</icon>
 <bigIcon>/icons/folder_100.png</bigIcon>
 <icon-expanded>/icons/folder_open.gif</icon-expanded>
 <category>Collaborative</category>
 <description>Folder.description</description>
 <default-view>view_documents</default-view>
 <subtypes>
 <type>Folder</type>
 <type>File</type>
 <type>Note</type>
 </subtypes>
 <layouts mode="any">
 <layout>heading</layout>
 </layouts>
 <layouts mode="edit">
 <layout>heading</layout>
 <layout>dublincore</layout>
 </layouts>
 <layouts mode="listing">
 <layout>document_listing</layout>
 <layout>document_listing_compact_2_columns</layout>
 <layout>document_listing_icon_2_columns</layout>
 </layouts>
</type>

Life Cycle

Nuxeo Core includes a Life-Cycle service.

Each document type can be bound to a life-cycle.

The life-cycle is responsible for defining:

the possible states of the document (ex: draft, validated, obsolete, ...),
the possible transitions between states (ex : validate, make obsolete, ...).

Life-cycle is not workflow, but:

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

18
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

workflows usually use the life-cycle of the document as one of the state variable of the process,
you can simulate simple review process using life-cycle and listeners (very easy to do using and content automation).Nuxeo Studio

Security management

By default, security is always on inside Nuxeo Repository: each time a document is accessed or a search is issued, security is verified.

Nuxeo Repository security relies on a list of unitary permissions that are used within the repository to grant or deny access. These atomic
permissions (Read_Children, Write_Properties ...) are grouped in Permissions Groups (Read, Write, Everything ...) so that security can be
managed more easily.

Nuxeo comes with a default set of permissions and permissions groups but you can contribute yours too.

ACL model

The main model for security management is based on an ACL (Access Control List) system.

Each document can be associated with an ACP (Access Control Policy).This ACP is composed of a list of ACLs that itself is composed of ACEs
(Access Control Entry).

Each ACE is a triplet:

User or Group,
Permission or Permission group,
grant or deny.

ACP are by default inherited: security check will be done against the merged ACP from the current document and all its parent. Inheritance can be
blocked at any time if necessary.

Each document can be assigned several ACLs (one ACP) is order to better manage separation of concerns between the rules that define
security:

document has a default ACL: the one that can be managed via back-office UI,
document can have several workflows ACLs: ACLs that are set by workflows including the document.

Thanks to this separation between ACLs, it's easy to have the document return to the right security if workflow is ended.

Security Policies

The ACP/ACL/ACE model is already very flexible. But is some cases, using ACLs to define the security policy is not enough. A classic example
would be confidentiality.

Imagine you have a system with confidential documents and you want only people accredited to the matching confidentiality level to be able to
see them. Since confidentiality will be a meta-data, if you use the ACL system, you have to compute a given ACL each time this meta-data is set.
You will also have to compute a dedicated user group for each confidentiality level.

In order to resolve this kind of issue, Nuxeo Repository includes a pluggable security policy system. This means you can contribute custom code
that will be run to verify security each time it's needed.

Such polices are usually very easy to write, since in most of the case, it's only a match between a user attribute (confidentiality clearance) and the
document's meta-data (confidentiality level).

Custom security policy could have an impact on performance, especially when doing open search on a big content repository. To prevent this risk,
security policies can be converted in low level query filters that are applied at storage level (SQL when is used) when doing searches.VCS

Indexing and Query

Indexing

All documents stored in Nuxeo Repository are automatically indexed on their metadata. Files contained in Documents are also by default Full Text
indexed.

For that, Nuxeo Core includes a conversion service that provides full text conversion from most usual formats (MSOffice, OpenOffice, PDF, Html,
Xml, Zip, RFC 822, ...).

So, in addition to meta-data indexing, the Nuxeo Repository will maintain a fulltext index that will be composed of: all meta-data text content + all
text extracted from files.

Configuration options depend on the storage backend, but you can define what should be put into the fulltext index and even define several
separated fulltext indexes.

Query support

http://doc.nuxeo.com/x/GATF
https://doc.nuxeo.com/display/Studio/Nuxeo+Online+Services
https://doc.nuxeo.com/display/GLOS/VCS

 Nuxeo Enterprise Platform 5.4 Documentation

19
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

Of course, indexing is only interesting if you can issue queries.

The Nuxeo Repository includes a Query system with a pluggable QueryParser that lets you do search against the repository content. The Nuxeo
Repository supports 2 types of queries:

NXQL: Native SQL Like query language
CMISQL: Normalized query language included in specificationCMIS

Both query languages let you search documents based on Keyword match (meta-data) and/or full text expressions. You can also manage
ordering.

In CMISQL you can do cross queries (i.e. : JOINS).

Here is an example of a NXQL query, to search for all non-folderish documents that have been contributed by a given user:

SELECT * FROM Document WHERE
dc:contributors = ? // simple match on a multi-valued field
AND ecm:mixinType != 'Folderish' // use facet to remove all folderish documents
AND ecm:mixinType != 'HiddenInNavigation' // use facet to remove all documents that should be hidden
AND ecm:isCheckedInVersion = 0 // only get checked-out documents
AND ecm:isProxy = 0 AND // don't return proxies
ecm:currentLifeCycleState != 'deleted' // don't return documents that are in the trash

As you may see, there is no security clause, because the Repository will always only return documents that the current user can see. Security
filtering is built-in, so you don't have to post-filter results returned by a search, even if you use complex custom security policies.

Other repository features

Versioning

The Nuxeo Repository includes a versioning system.

At any moment, you can ask the repository to create and archive a version from a document. Versioning can be configured to be automatic (each
document modification would create a new version) or on demand (this is bound to a radio button in default Nuxeo DM UI).

Each version has:

a label,
a major version number,
a minor version number.

The versioning service is configurable so you can define the numbering policy. In fact, even the version storage service is pluggable so you can
define your own storage for versions.

Proxies

The Nuxeo Repository includes the concept of Proxy.

A proxy is very much like a symbolic link on an Unix-like OS: a proxy points to a document and will look like a document from the user point of
view:

the proxy will have the same meta-data as the target document,
the proxy will hold the same files as the target documents (since file is a special kind of meta-data).

A proxy can point to a live document or to a version (check in archived version).

Proxies are used to be able to see the same document from several places without to duplicate any data.

The initial use case for proxies in Nuxeo DM is local publishing: when you are happy with a document (and eventually successfully completed a
review workflow), you want to create a version for this document. This version will be the one validated and the live document stays in the
workspace where you created it. Then you may want to give access to this valid document to several people. For that, you can publish the
document into one or several sections: this means creating proxies pointing to the validated version.
Depending on their rights, people that can not read the document from the workspace (because they can not access it) may be able to see it from
one or several sections (that may even be public).

http://doc.nuxeo.com/x/GATF
https://doc.nuxeo.com/display/GLOS/CMIS

 Nuxeo Enterprise Platform 5.4 Documentation

20
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

The second use cases for proxies is multi-filling.

If a proxy can not hold meta-data, it can hold security descriptors (ACP/ACL). So a user may be able to see one proxy and not an other.

Event systems

When the Nuxeo Repository performs an operation, an event will be raised before and after.

Events raised by the Repository are:

aboutToCreate / emptyDocumentModelCreated / documentCreated
documentImported
aboutToRemove / documentRemoved
aboutToRemoveVersion / versionRemoved
beforeDocumentModification / documentModified
beforeDocumentSecurityModification / documentSecurityUpdated
documentLocked / documentUnlocked
aboutToCopy / documentCreatedByCopy / documentDuplicated
aboutToMove / documentMoved
documentPublished / documentProxyPublished / documentProxyUpdated / sectionContentPublished
beforeRestoringDocument / documentRestored
sessionSaved
childrenOrderChanged
aboutToCheckout / documentCheckedOut
incrementBeforeUpdate / aboutToCheckIn

These events are forwarded on the Nuxeo Event Bus and can be processed by custom handlers. As for all Events Handlers inside Nuxeo
Platform, these Handlers can be:

Synchronous: meaning they can alter the processing of the current operation
(ex: change the Document content or mark the transaction for RollBack).
Synchronous Post-Commit: executed just after the transaction has been committed
(can be used to update some data before the user gets the result).
Asynchronous: executed asynchronously after the transaction has been committed.

Inside the Nuxeo Repository this event system is used to provide several features:

some fields are automatically computed (creation date, modification date, author, contributors ...),
documents can be automatically versioned,
fulltext extraction is managed by a listener too,
...

Using the event listener system for these features offer several advantages:

you can override the listeners to inject your own logic,
you can deactivate the listeners if you don't need the processing,
you can add your own listeners to provide extract features.

Repository Storage

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

21
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

The Nuxeo Repository consists of several services.

One of them is responsible for actually managing persistence of Documents. This service is pluggable. Nuxeo Repository can have two different
persistence backends:

Nuxeo VCS.
Apache Jackrabbit (only up to Nuxeo 5.3.2),

Choosing between the two backends depends on your constraints and requirements, but from the application point of view it is transparent:

The API remains the same,
Documents are the same.

The only impact is that VCS has additional features that are not supported by the Jackrabbit backend.

Nuxeo Visible Content Store (VCS)

Nuxeo VCS was designed to provide a clean SQL Mapping. This means that VCS does a normal mapping between XSD schemas and the SQL
database:

a schema is mapped as a table,
a simple field is mapped as a column,
a complex type is mapped as a foreign key pointing to a table representing the complex type structure.

Using such a mapping provides several advantages:

a DBA can see the database content and fine tune indexes if needed,
you can use standard SQL based BI tools to do reporting,
you can do low level SQL bulk inserts for data migration.

Binary files are never stored in the database, they are stored via BinaryManager on the file system using their digest. Files are only deleted from
the file system by a garbage collector script.

This storage strategy as several advantages:

storing several times the same file in Nuxeo won't store it several time on disk,
Binary storage can be easily snapshotted.

VCS being now the default Nuxeo backend, it also provides some features that are not available when using the JCR backend:

Tag Service,
Possibility to import a Document with a fixed UUID (useful for application level synchronization).

In addition, VCS provides a native Cluster mode that does not rely on any external clustering system.
This means you can have 2 (or more) Nuxeo servers sharing the same data: you only have to turn on Nuxeo VCS Cluster mode.

Advantages of VCS:

SQL Storage is usage by DBAs and by BI reporting tools,
supports Hot Backup,
supports Cluster mode,
supports extra features,
supports low level SQL bulk imports,
VCS scales well with big volumes of Documents.

Drawbacks of VCS:

storage is not JCR compliant.

Apache Jackrabbit Backend

The Jackrabbit backend is compliant with the JSR-170 standard (JCR).

This is the "historical" backend, since first versions of Nuxeo were using this backend by default (it was the only one available).

Jackrabbit provides a storage abstraction layer and can be configured:

to store everything on the file system (meta-data + files),
to store everything in a SQL DataBase (meta-data + files),
to store meta-data in the SQL DataBase and store files on the filesystem (recommended solution).

Advantages of this backend:

This backend is not present in new Nuxeo versions.

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

22
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

it is JSR-170 compliant so you can use any compliant browser to access your Nuxeo Documents, even without Nuxeo code,
it can run on a pure filesystem (not recommended for production).

Drawbacks of this backend:

SQL storage is cryptic (Database stores serialized java objects),
JackRabbit uses a Lucene index on filesystem (so clustering and hot-backup are complicated),
doing reporting on JackRabbit data is complex.

Advanced features

Lazy Loading and binary files streaming

In Java API, a Nuxeo Document is represented as a object.DocumentModel

Because a Document can be big (lots of fields including several files), a DocumentModel Object could be big:

big object in memory,
big object to transfer on the network (in case of remoting),
big object to fetch from the storage backend.

Furthermore, even when you have very complex documents, you don't need all these data on each screen: in most screens you just need a few
properties (title, version, life-cycle state, author...).

In order to avoid these problems, the Nuxeo DocumentModel supports Lazy-Fetching: a DocumentModel is by default not fully loaded, only the
field defined as prefetch are initially loaded. The DocumentModel is bound to the Repository Session that was used to read it and it will
transparently fetch the missing data, block per block when needed.

You still have the possibility to disconnect a DocumentModel from the repository (all data will be fetched), but the default behavior is to have a
lightweight Java object that will fetch additional data when needed.

The same kind of mechanism applies to files, with one difference: files are transported via a dedicated streaming service that is built-in. Because
default RMI remoting is not so smart when it comes to transferring big chuck of binary data, Nuxeo uses a custom streaming for transferring files
from and to the Repository.

Transaction management

The Nuxeo Repository uses the notion of .Session

All the modifications to documents are done inside a session and modifications are saved (written in the backend) only when the session is saved.

In a JTA/JCA aware environment, the Repository Session is bound to a JCA Connector that allows:

the Repository Session to be part of the global JTA transaction,
the session to be automatically saved when the transaction commits.

This means that in a JTA/JCA compliant environment you can be sure that the Repository will always be safe and have the expected transactional
behavior. This is important because a single user action could trigger modifications in several services (update documents in repository, update a
workflow process state, create an audit record) and you want to be sure that either all these modifications are done, or none of them: you don't
want to end up in an inconsistent state.

DocumentModel Adapter

In a lot of cases, Documents are used to represent Business Object: Invoice, Subscription, Contract...

The DocumentModel class will let you design the data structure using schemas, but you may want to add some business logic to it:

provide helper methods that compute or update some fields,
add integrity checks based on business rules,
add business methods.

For this, Nuxeo Core contains an system that lets you bind a custom Java class to a DocumentModel.adapter

The binding can be made directly against a document type or can be associated to a facet.

By default, Nuxeo EP provides some generic adapters:

BlobHolder: lets you read and write Binary files stored in a document,
CommentableDocument: encapsulates Comment Service logic so that you can easily comment a document,
MultiViewPicture: provides an abstraction and easy API to manipulate a picture with multiple views,
...

VCS Architecture

The goals of VCS (Visible Content Store) are to:

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

23
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

store information in standard SQL databases,
use "natural" object mapping to tables,
be fast,
support full-text searches on databases having that capability,
have some flexibility in the storage model to optimize certain cases at configuration time.

In this section:
Mapping Nuxeo to nodes and properties

Nodes, properties, children
Children
Fragment tables
Fields mapping
Security

Fragments tables
Hierarchy table
Type information
Simple fragment tables
Collection fragment tables
Files and binaries
Relations
Versioning
Proxies
Locking
Security
Miscellaneous values
Fulltext

Other system tables
Repositories
Clustering
Path optimizations
ACL optimizations

Mapping Nuxeo to nodes and properties

The Nuxeo model is mapped internally to a model based on a hierarchy of nodes and properties. This model is similar to the basic JCR (JSR-170)
data model.

Nodes, properties, children

A node represents a complex value having several properties. The properties of a node can be either simple (scalars, including binaries), or
collections of scalars (lists usually). A node can also have children which are other nodes.

Children

The parent-child information for nodes is stored in the table.hierarchy
The normal children of a document are mapped to child nodes of the document node. If a document contains complex types, they are also
mapped to child nodes of the document mode. There are therefore two kinds of children: child documents and complex types. They have to be
quickly distinguished in order to:

find all child documents and only them,
find all complex properties of a document and only them,
resolve name collisions.

To distinguish the two, the hierarchy table has a column holding a flag to decide if it's a complex property or not.isproperty

Fragment tables

A fragment table is a table holding information corresponding to the scalar properties of one schema (simple fragment), or a table corresponding
to one multi-valued property of one schema (collection fragment).

For a simple fragment, each of the table's columns correspond to a simple property of the represented schema. One row corresponds to one
document (or one instance of a complex type) using that schema.

For a collection fragment, the set of values for the multi-valued property is represented using as many rows as needed. An additional columnpos
provides ordering of the values.

A node is the set of fragments corresponding to the schemas of that node.

Fields mapping

Nuxeo fields are mapped to properties or to child nodes:

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

24
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

a simple type (scalar or array of scalars) is mapped to a property (simple or collection) of the document node,
a complex type is mapped to a child node of the document node. There are two kinds of complex types to consider:

lists of complex types are mapped to an ordered list of complex property children,
non-list complex types are mapped to a node whose node type corresponds to the internal schema of the complex type.

Security

Security information is stored as an ACL which is a collection of simple ACEs holding basic rights information. This collection is stored in a
dedicated table in a similar way to lists of scalars, except that the value is split over several column to represent the rich ACE values.

Fragments tables

Each node has a unique identifier which is a UUID randomly generated by VCS. This random generation has the advantage that different cluster
nodes don't have to coordinate with each others to create ids.

All the fragments making up a given node use the node id in their column.id

For clarity in the rest of this document simple integers are used, but Nuxeo actually uses UUIDs, like 56e42c3f-db99-4b18-83ec-601e0653f
 for example.906

Hierarchy table

There are two kinds of nodes: filed ones (those who have a location in the containment hierarchy), and unfiled ones (version frozen nodes, and
since Nuxeo EP 5.3.2 some other documents like tags).

Each node has a row in the main hierarchy table defining its containment information if it is filed, or just holding its name if it is unfiled. The same
tables holds ordering information for ordered children.

Table :hierarchy

id parentid pos name ...

1 ""

1234 1 workspace

5678 1234 mydoc

Note that:

the column is used as a reference with from all other fragment tables that refer to it,id FOREIGN KEY ON DELETE CASCADE
the is for non-ordered children,pos NULL
the and are for unfiled nodes,parentid pos NULL
the is an empty string for the hierarchy's root.name

For performance reasons (denormalization) this table has actually more columns; they are detailed below.

Type information

The node types are accessed from the main table.hierarchy

When retrieving a node by its id the and are consulted. According to their values a set of applicable fragments isprimarytype mixintypes
deduced, to give a full information of all the fragment tables that apply to this node.

Table (continued):hierarchy

id ... isproperty primarytype mixintypes ...

1 FALSE Root

1234 FALSE Bar

5678 FALSE MyType [Facet1,Facet2]

The column holds a boolean that distinguishes normal children from complex properties,isproperty

The stores a set of mixins (called Facets in the high-level documentation). For databases that support arrays (PostgreSQL), theymixintypes
are stored as an array; for other databases, they are stored as a -separated string with initial and final terminators (in order to allow efficient | | LI

-based matching) — for the example row 5678 above the mixins would be stored as the string .KE |Facet1|Facet2|

Note that the column is new since Nuxeo EP 5.4.1.mixintypes

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

25
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

Simple fragment tables

Each Nuxeo schema corresponds to one table. The table's columns are all the single-valued properties of the corresponding schema.
Multi-valued properties are stored in a separate table each.

A "myschema" fragment (corresponding to a Nuxeo schema with the same name) will have the following table:

Table :myschema

id title description created

5678 Mickey The Mouse 2008-08-01 12:56:15.000

A consequence is that to retrieve the content of a node, a will have to be done in each of the tables corresponding to the node type andSELECT
all its inherited node types. However lazy retrieval of a node's content means that in many cases only a subset of these tables will be needed.

Collection fragment tables

A multi-valued property is represented as data from a separate array table holding the values and their order. For instance, the property
"my:subjects" of the schema "myschema" with prefix "my" will be stored in the following table:

Table :my_subjects

id pos item

5678 0 USA

5678 1 CTU

Files and binaries

The blob abstraction in Nuxeo is treated by the storage as any other schema, "content", except that one of the columns hold a "binary" value. This
binary value corresponds indirectly to the content of the file. Because the content schema is used as a complex property, there are two entries in
the table for each document.hierarchy

Table :hierarchy

id parentid name isproperty primarytype ...

4061 5678 myreport FALSE File

4062 5678 test FALSE File

4063 5678 test2 FALSE File

8501 4061 content TRUE content

8502 4062 content TRUE content

8503 4063 content TRUE content

Table :content

id name mime-type encoding data length digest

8501 report.pdf application/pdf ebca0d868ef3 344256

8502 test.txt text/plain ISO-8859-1 5f3b55a834a0 541

8503 test_copy.txt text/plain ISO-8859-1 5f3b55a834a0 541

Table :file

id filename

4061 report.pdf

4062 test.txt

4063 test_copy.txt

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

26
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

The filename is also stored in a separate table just because the current Nuxeo schemas are split that way (the filename is a property of thefile
document, but the content is a child complex property). The filename of a blob is also stored in the column of the table.name content

The column of the table refers to a binary type. All binary storage is done through the interface of Nuxeo.data content BinaryManager

The default implementation () stores binaries on the server filesystem according to the value stored in the data column,DefaultBinaryManager
which is computed as a cryptographic hash of the binary in order to check for uniqueness and share identical binaries (hashes are actually longer
than shown here). On the server filesystem, a binary is stored in a set of multi-level directories based on the has, to spread storage. For instance
the binary with the hash will be stored in a file with path c38fcf32f16e4fea074c21abb4c5fd07 data/c3/8f/c38fcf32f16e4fea074c21

 under the binaries root.abb4c5fd07

Relations

Since Nuxeo EP 5.3.2, some internal relations are stored using VCS. By default they are the relations that correspond to tags applied on
documents, although specific applications could add new ones. Note that most user-visible relations are still stored using the Jena engine in
different tables.

Table :relation

id source target

1843 5670 5700

The and columns designate standard documents (keyed by the table). The relation object itself is a document, sosource target hierarchy
its id is present in the table as well, with the "Relation" or a subtype of it.hierarchy primarytype

In the case of tags, the relation document has type "Tagging", its source is the document being tagged, and its target has type "Tag" (a type with
a schema "tag" that contains a field "label" which is the actual tag).

Versioning

You may want to read first.background information about Nuxeo versioning

Versioning uses identifiers for several concepts:

Live node id: the identifier of a node that may be subject to versioning.
Version id: the identifier of the frozen node copy that is created when a version was snapshotted, often just called a "version".
versionable id: the identifier of the original live node of a version, but which keeps its meaning even after the live node may be deleted.
Several frozen version nodes may come from the same live node, and therefore have the same versionable id, which is why it is also
called also the .version series id

Version nodes don't have a parent (they are unfiled), but have more meta-information (versionable id, various information) than live nodes. Live
nodes hold information about the version they are derived from (base version id).

Table (continued):hierarchy

id ... isversion ischeckedin baseversionid majorversion minorversion

5675 TRUE 6120 1 0

5678 FALSE 6143 1 1

5710 FALSE

6120 TRUE 1 0

6121 TRUE 1 1

6143 TRUE 4 3

Note that:

this information is inlined in the hierarchy table for performance reasons,
the represents the version from which a checked out or checked in document originates. For a new document that hasbaseversionid
never been checked in it is ,NULL
the column is new since Nuxeo EP 5.4.isversion

Table :versions

id versionableid created label description islatest islatestmajor

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

27
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

6120 5675 2007-02-27
12:30:00.000

1.0 FALSE TRUE

6121 5675 2007-02-28
03:45:05.000

2.1 TRUE FALSE

6143 5678 2008-01-15
08:13:47.000

4.3 TRUE FALSE

Note that:

the is the id of the versionable node (which may not exist anymore, which means it's not a reference),versionableid FOREIGN KEY
and is common to a set of versions for the same node, it is used as a .version series id
islatest is true for the last version created,
islatestmajor is true for the last major version created, a major version being a version whose minor version number is 0,
the contains a concatenation of the major and minor version numbers for users's benefit (before Nuxeo EP 5.4 it was just anlabel
integer incremented for each new version),
the columns and are new since Nuxeo EP 5.4.islatest islatestmajor

Proxies

Proxies are a Nuxeo feature, expressed as a node type holding only a reference to a frozen node and a convenience reference to the versionable
node of that frozen node.

Proxies by themselves don't have additional content-related schema, but still have security, locking, etc. These facts are part of the node type
inheritance, but the proxy node type table by itself is a normal node type table.

Table :proxies

id targetid versionableid

9944 6120 5675

Note that:

the is the id of a version node and is a reference to .targetid FOREIGN KEY hierarchy.id
the is duplicated here for performance reasons, although it could be retrieved from the target using a .versionableid JOIN

Locking

The locks are held in a table containing the lock owner and a timestamp of the lock creation time..

Table :locks

id owner created

5670 Administrator 2008-08-20 12:30:00.000

5678 cobrian 2008-08-20 12:30:05.000

9944 jbauer 2008-08-21 14:21:13.488

When a document is unlocked, the corresponding line is deleted.

Before Nuxeo EP 5.4.1, the locking table was simpler and only contained one column with values like ,lock Administrator:Aug 20, 2008
or when not locked. This was changed to the format described above by .NULL NXP-6054

Another important feature of the table is that the column is not a foreign key to . This is necessary in order to isolatelocks id hierarchy.id
the locking subsystem from writing transactions on the main data, to have atomic locks.

Security

The Nuxeo security model is based on the following:

a single ACP is placed on a (document) node,
the ACP contains an ordered list of named ACLs, each ACL being an ordered list of individual grants or denies of permissions,
the security information on a node (materialized by the ACP) also contains local group information (which can emulate owners).

Table :acls

id pos name grant permission user group

http://doc.nuxeo.com/x/GATF
http://jira.nuxeo.com/browse/NXP-6054

 Nuxeo Enterprise Platform 5.4 Documentation

28
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

5678 0 local true WriteProperties cobrian

5678 1 local false ReadProperties Reviewer

5678 2 workflow false ReadProperties kbauer

This table is slightly denormalized (names with identical values follow each other by pos ordering), but this is to minimize the number of {{JOIN}}s
to get all ACLs for a document. Also one cannot have a named ACL with an empty list of ACEs in it, but this is not a problem given the semantics
of ACLs.

The column is separated from the column because they semantically belong to different namespaces. However for now in Nuxeouser group
groups and users are all mixed in the column, and the column is kept empty.user group

Miscellaneous values

The lifecycle information (lifecycle policy and lifecycle state) is stored in a dedicated table.

The dirty information (a flag that describes whether the document has been changed since its last versioning) is stored in the same table for
convenience.

Two Nuxeo "system properties" of documents in use by the workflow are also available

Table :misc

id lifecyclepolicy lifecyclestate dirty wfinprogress wfincoption

5670 default draft FALSE

5678 default current TRUE

9944 publishing pending TRUE

Fulltext

The fulltext indexing table holds information about the fulltext extracted from a document, and is used when fulltext queries are made. The
structure of this table depends a lot on the underlying SQL database used, because each database has its own way of doing fulltext indexing. The
basic structure is as follow:

Table :fulltext

id jobid fulltext simpletext binarytext

5678 5678 Mickey Mouse USA CTU
report pdf reporttitle ...

Mickey Mouse USA CTU
report pdf

reporttitle ...

The column holds text extracted from the string properties of the document configured for indexing. The column holdssimpletext binarytext
text extracted from the blob properties of the document configured for indexing. The column is the concatenation of the two and is thefulltext
one usually indexed as fulltext by the database. A database trigger updates as soon as or is changed.fulltext simpletext binarytext

Since Nuxeo EP 5.4.1, the column holds the document identifier of the document being indexed. Once the asynchronous job complete, alljobid
the rows that have a matching the document id are filled with the computed fulltext information. This ensures in most cases that the fulltextjobid
information is well propagated to all copies of the documents.

Some databases can directly index several columns at a time, in which case the column doesn't exist, there is no trigger, and the two fulltext
 and columns are indexed together.simpletext binarytext

The above three columns show the data stored and indexed for the default fulltext index, but Nuxeo allows any number of additional indexes to be
used (indexing a separate set of properties). In this case additional columns are present, suffixed by the index name; for instance for index "main"
you would find the additional columns:

Table (continued):fulltext

id ... fulltext_main simpletext_main binarytext_main

5678 bla bla

Other system tables

Repositories

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

29
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

This table hold the root id for each repository. Usually Nuxeo has only one repository per database, which is named "default".

Table :repositories

id name

1 default

Note that the column is a to .id FOREIGN KEY hierarchy.id

Clustering

When configured for cluster mode, two additional tables are used to store cluster node information and cluster invalidations.

A new row is created automatically in the cluster nodes table when a new cluster node connects to the database. It is automatically removed
when the cluster node shuts down.

Table :cluster_nodes

nodeid created

71 2008-08-01 12:31:04.580

78 2008-08-01 12:34:51.663

83 2008-08-01 12:35:27.184

Note that:

the is assigned by the database itself, its form depends on the database,nodeid
the date is not used by Nuxeo but is useful for diagnostics.created

The cluster invalidations are inserted when a transaction commits, the invalidation rows are duplicated for all cluster node ids that are not the
current cluster node. Rows are removed as soon as a cluster node checks for its own invalidations, usually at the beginning of a transaction.

Table :cluster_invals

nodeid id fragments kind

78 5670 hierarchy, dublincore, misc 1

78 5678 dublincore 1

83 5670 hierarchy, dublincore, misc 1

83 5678 dublincore 1

Note that:

id is a node id but is not a to for speed reasons,FOREIGN KEY hierarchy.id
fragments is the list of fragments to invalidate; it is a space-separated string, or an array of strings for databases that support arrays,
kind is 1 for modification invalidations, or 2 for deletion invalidations.

Path optimizations

For databases that support it, some path optimizations allow faster computation of the NXQL operator.STARTSWITH

When path optimizations are enabled (this is the default on supported databases), an addition table stores the descendants of every document.
This table is updated through triggers when documents are added, deleted or moved.

Table :descendants

id descendantid

1 1234

1 5678

1234 5678

Note that is a to .descendantid FOREIGN KEY hierarchy.id

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

30
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

Another more efficient optimization is used instead for PostgreSQL since Nuxeo EP 5.3.2 (see). For this optimization, an tNXP-5390 ancestors
able stores all the ancestors as an array in a single cell. This table is also updated through triggers:

Table :ancestors

id ancestors

1234 [1]

5678 [1, 1234]

The column contains the array of ordered ancestors of each document (not complex properties), with the root at the beginning of theancestors
array and the direct parent at the end.

ACL optimizations

For databases that support it, ACL optimizations allow faster security checks than the stored procedure used in standard.NX_ACCESS_ALLOWED

The table stores information about the complete ACL that applies to a document.hierarchy_read_acl

Table :hierarchy_read_acl

id acl_id

5678 bc61ba9c8dbf034468ac361ae068912b

The is the unique identifier for the complete read ACL (merged with ancestors) for this document. It references the column in the acl_id id rea
 table, but not using a for speed reasons.d_acls FOREIGN KEY

The table stores all the possibles ACLs and their unique id.read_acls

Table :read_acls

id acl

bc61ba9c8dbf034468ac361ae068912b -Reviewer,-kbauer,Administrator,administrators

The unique ACL id is computed through a hash to simplify unicity checks.

When a security check has to be done, the user and all its groups are passed to a stored procedure (usually), and theNX_GET_READ_ACLS_FOR
resulting values are ed to the table to limit document ids to match.JOIN hierarchy_read_acl

The stored procedure has to find all ACLs for a given user, and the results of that can be cached in the NX_GET_READ_ACLS_FOR read_acls_c
 table. This cache is invalidated as soon as security on a document changes.ache

Table :read_acls_cache

users_md5 acl_id

f4bb42d8 1

f4bb42d8 1234

f4bb42d8 5678

c5ad3c99 1

c5ad3c99 1234

Note:

f4bb42d8 is the MD5 hash for "Administrator,administrators", c5ad3c99 is the MD5 hash for "kbauer,members".
a hash is used to make sure this column has a limited size.

An additional table, , is used to temporarily log document ids where ACLs are modified.hierarchy_modified_acl

Table :hierarchy_modified_acl

id is_new

5678 FALSE

http://doc.nuxeo.com/x/GATF
http://jira.nuxeo.com/browse/NXP-5390

 Nuxeo Enterprise Platform 5.4 Documentation

31
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

5690 TRUE

Note that:

id is a reference to but does not use a for speed reasons,hierarchy.id FOREIGN KEY
is_new is false for an ACL modification (which has impact on the document's children), and true for a new document creation (where the
merged ACL has to be computed).

This table is filled while a set of ACL modifications are in progress, and when the Nuxeo session is saved the stored procedure NX_UPDATE_REA
 is called to recompute what's needed according to , which is then emptied.D_ACLS hierarchy_modified_acl

Since 5.4.2 for PostgreSQL there is a new enhancement to be more efficient in read/write concurrency. Instead of flushing the list of read ACL per
user when a new ACL is added, the list is updated. This is done using database triggers. Note that some tables have been renamed and prefixed
by aclr_ (for ACL Read). Following is a big picture of the trigger processing:

Platform features quick overview
This page presents a quick overview of the main features available in Nuxeo EP:

Document Management
Indexing
Renditions, preview and annotations
Process Management and content automation
eMails
Digital Asset Management
Portal and Web views

It is not supposed to be exhaustive, the main target is to help you see what Nuxeo EP can do for you.

Document Management

Document Management features are the core of Nuxeo EP.

Basically, using the Nuxeo Repository you can define your own document types. For this, you can define XSD schemas that will define the
structure of your documents:

you can share schemas between document types, to have common blocks of meta-data,
you can use inheritance between document types, to create a hierarchy.

The fields in schemas (and then in documents) can be:

simple types (String, Date, Integer, Boolean, Double ...),
list of simple types (multi-valued properties),
complex types:

file (binary stream, filename, mime-type, size),
custom complex types (like an postal address).

The Nuxeo Repository can manage versioning on documents (including numbering policies), manage customized ID generation. It can also
manage security on documents (see for more details).the page on Repository overview

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

32
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

Nuxeo EP lets you associate documents with relations and tags. It also provides UI building blocks to help you use the documents inside the
repository:

The form (Layout and Widget) system enables you to easily define View/Edit/Create screens,
Navigation can be based on several physical filing plans:

physical plan,
meta-data (virtual navigation),
tags,
...

Indexing

All documents stored in the Nuxeo Repository are indexed. is configurable and by default manages:Indexing

all meta-data keyword indexing,
fulltext indexing on all extracted from meta-data fields and files.

All standard files types are . Fulltext extraction is pluggable: you can add a custom extractor if you have very specific file types.fulltext indexed

The Repository provides a to let you:query system

search on meta-data,
search on fulltext.

Nuxeo Search can be done in (SQL like) or CMISQL.NXQL

Search results take security into account: a user can not find a document that he can not access.

Renditions, preview and annotations

Nuxeo EP includes a that can be used to convert binary files to text, html, pdf, etc. This is pluggableconversion service ConversionService
and you can define your own conversion plugins and your own conversion chains.

Nuxeo EP also includes a that provides HTML preview UI coupled with an . This lets user read and annotate apreview service annotation service
MSOffice file without needing to run MSOffice locally. The Annotation server is based on the Annotea W3C standard and provides annotation
capabilities for both text and images.

Process Management and content automation

Documents are associated with a . The lifecycle defines the possible states of a document and the associated transitions. Many simplelifecycle
review process can be managed with a simple lifecycle and some custom listeners (java code or scripting).

You can also use to simply define operation chains triggered by events using (no need to code).Content Automation Nuxeo Studio

Of course, if you need real , Nuxeo EP integrates the jBPM engine and a set of generic handlers that can be usedBusiness Process management
to manipulate documents from within the business process context.

eMails

Nuxeo provides features to:

send a document via email,
manage notifications via email,
fetch eMails from a mailbox and transform them into Nuxeo Documents,
inject eMails in Nuxeo Repository.

Digital Asset Management

Nuxeo EP provides several features to deal with :pictures

extract or set meta-data associated with picture formats (EXIF, IPTC ...),
resize and rotate images,
convert images between formats,
generate thumbnails and picture book views,
provide browsing and tiling web UI (allows to view and zoom on a very large image even in a web browser).

For assets, Nuxeo EP provides services for:video

video conversion,
video thumbnails extraction,
integration with a streaming server (Darwin).

http://doc.nuxeo.com/x/GATF
https://doc.nuxeo.com/display/GLOS/NXQL
https://doc.nuxeo.com/display/Studio/Nuxeo+Online+Services

 Nuxeo Enterprise Platform 5.4 Documentation

33
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

Portal and Web views

The main target of Nuxeo EP is to provide tools to create and manage content. But Nuxeo EP also provides tools to generate on yourWeb views
content.

For that, provides a simple template-based rendering system that is completely integrated with Nuxeo documents and services.WebEngine

With WebEngine, it's easy to provide a custom web view on top of a document, workspace, folder, ...

Nuxeo EP also provides pre-built WebEngine module for WebSites, Blogs and Wikis.

If you want to aggregate content or small web applications you can also use Nuxeo as a .portal

For that Nuxeo EP integrates:

a UWA widgets container,
a complete OpenSocial Server (OAuth, Google Gadgets, Social APIs...).

Component model overview
In this section:

Nuxeo Bundles
Components and Services
Extension Points

Declare an extension point
Contribute to an Extension Point
Extension Points everywhere

Nuxeo Services and JEE
Packaging and deployment

Nuxeo Bundles

Inside Nuxeo EP, software parts are packaged as Bundles.

A Nuxeo Bundle is a jar archive containing:

an OSGI-based MANIFEST file,
Java classes,
XML Components,
Resources,
a deployment descriptor.

The MANIFEST file is used to:

define an id for the bundle,
define the dependencies of the bundles (ie: other bundles that should be present for this bundle to run),
list XML components that are part of the bundle.

Here is an example of a MANIFEST file:

Manifest-Version: 1.0
Bundle-ManifestVersion: 2
Bundle-Name: NXCoreConvert
Bundle-SymbolicName: org.nuxeo.ecm.core.convert
Bundle-Localization: plugin
Require-Bundle: org.nuxeo.ecm.core.api,
 org.nuxeo.ecm.core.convert.api
Bundle-Vendor: Nuxeo
Export-package: org.nuxeo.ecm.core.convert.cache,
 org.nuxeo.ecm.core.convert.extension,
 org.nuxeo.ecm.core.convert.service
Bundle-Category: runtime
Nuxeo-Component: OSGI-INF/convert-service-framework.xml

Here we can see that:

Bundle is named .org.nuxeo.ecm.core.convert
Bundle depends on 2 other bundles: and .core.api convert.api

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

34
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

Bundle contains one XML component: .convert-service-framework.xml

Components and Services

The XML components are XML files, usually placed in the directory, that are used to declare configuration to Nuxeo Runtime.OSGI-INF

Each XML component has a unique id and can:

declare requirement on other components,
declare a JAVA component implementation,
contain XML contribution,
declare a Java contribution.

A Java Component is a simple Java class that is declared as component via an XML file.

Components usually derive from a base class provided by Nuxeo Runtime and will be available as a singleton via a simple Nuxeo Runtime call:

Framework.getRuntime().getComponent(componentName)

Usually, components are not used directly, they are used via a service interface. For that, the XML components can declare which Service
Interfaces are provided by a given component. The component can directly implement the service interface or can delegate service interface
implementation to an other class. Once declared the Service will be available via a simple Nuxeo Runtime call:

Framework.getService(ServiceInterface.class)

Extension Points

One of the corner stone of the Nuxeo Platform is to provide components and services that can easily be configured or extended.
For that, we use the Extension Point system from Nuxeo Runtime that is inspired from Equinox (Eclipse platform).

This extension point system allows you to:

configure the behavior of components (= contribute XML configuration),
extend the behavior of components (= contribute Java code or scripting).

Basically, inside Nuxeo EP, the pattern is always the same:

Services are provided by Components,
Components expose Extension Points.

The same extension point system is used all over the platform:

inside Nuxeo Runtime itself,
inside Nuxeo Core (configure and extend Document storage),
inside Nuxeo Service layer (configure and extend ECM services),
inside UI layer (assemble building blocks, contribute new buttons or views, configure navigation, ...).

Each Java Component can declare one or several extension points.

These Extension Points can be used:

to provide configuration,
to provide additionnal code (i.e. : plugin system).

So most Nuxeo Services are configurable and pluggable via the underlying component.

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

35
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

Declare an extension point

Extension Points are declared via the XML Component that declares the Java Component.

Here is a simple example:

<?xml version="1.0"?>
<component >name="org.nuxeo.ecm.core.convert.service.ConversionServiceImpl"
 <documentation>
 Service to handle conversions
 </documentation>
 <implementation class="org.nuxeo.ecm.core.convert.service.ConversionServiceImpl"/>*
 <service>
 <provide interface="org.nuxeo.ecm.core.convert.api.ConversionService"/>*
 </service>
 <extension-point name="converter">
 <documentation>
 This extension can be used to register new converters
 </documentation>
 <object class="org.nuxeo.ecm.core.convert.extension.ConverterDescriptor"/>
 </extension-point>
 <extension-point name="configuration">
 <documentation>
 This extension can be used to configure conversion service
 </documentation>
 <object class="org.nuxeo.ecm.core.convert.extension.GlobalConfigDescriptor"/>
 </extension-point>
</component>

What we can read in this XML component is:

the declaration of a Java Component (via the tag),<implementation>
the declaration of the provided by java component,ConvertService ConvertServiceImpl
the declaration of 2 extension points:

one to contribute configuration,
one to contribute java code (new converter plugins).

Contribute to an Extension Point

XML component can also be used to contribute to extension points.

For that, the XML component needs:

to be referenced in a MANIFEST bundle,
to specify a target extension point,
to provide the XML content expected by the target extension point.

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

36
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

Expected XML syntax is defined by the XMap object referenced in the extension point declaration.

Here is an exemple contribution to an extension point:

<?xml version="1.0"?>
<component name="org.nuxeo.ecm.platform.convert.plugins">

 < >extension target="org.nuxeo.ecm.core.convert.service.ConversionServiceImpl" point="converter"

 <converter name="zip2html" class="org.nuxeo.ecm.platform.convert.plugins.Zip2HtmlConverter">
 <destinationMimeType>text/html</destinationMimeType>
 <sourceMimeType>application/zip</sourceMimeType>
 </converter>

 </extension>

</component>

Extension Points everywhere

Nuxeo Platform uses extension Points extensively, to let you extend and configure most of the features provided by the platform.

The gadget below lists the extension Points available in the DM distribution:
Error rendering macro 'gadget' : Error rendering gadget [http://explorer.nuxeo.org/nuxeo/site/gadgets/extensionPoints/extensionPoints.xml]

Nuxeo Services and JEE

Nuxeo Component and Service model is mainly a POJO model, but it can be integrated into a JEE application to leverage services provided by
the container. For that purpose, Nuxeo Service can be bound to EJB3 Session Beans.

Doing so provides access to the container provided features:

remote (RMI) access to the services,
transaction support,
JAAS security propagation,
Entity Manager access via injection,
EJB3 pooling.

Most Nuxeo Services are mapped to Stateless Session beans.
Nuxeo Repository service (DocumentManager) is mapped to a Statefull Session Bean because of the underlying CoreSession.

From the client point of view, the service is always accessed the same way: Nuxeo Runtime will map the call to a JNDI lookup to an EJB3 or to a
simple POJO lookup depending on configuration and on deployment environment.

Packaging and deployment

The layered architecture impacts the way we package features in Nuxeo EP.

In order to keep as much deployment options as possible and let you choose what you deploy and where, each feature (workflow, relations,
conversions, preview ...) is packaged in several separated bundles.

Typically, this means that each feature will possibly be composed of:

an that contains all interfaces and remotable objects needed to access the provided services;API Bundle
a that contains the POJO implementation for the components and services;Core Bundle
a that provides the JEE bindings for the services (JTA, Remoting, JAAS ...);Facade Bundle
a that contains all the direct contributions to the Repository (Document types, listeners, security policies ...);Core Contrib Bundle
client bundles.

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

37
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

All the bundles providing the different layers of the same feature are usually associated to the same Maven artifact group and share the same
parent POM file.
This is basically a bundle group for a given feature.

API and connectors

Nuxeo APIs

Nuxeo EP provides several types of API :

Java local API
Java remote API
WebService (JAX-WS) API
REST (JAX-RS) API
AMF (Flash) API

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

38
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

Since Nuxeo EP is built using the java language, only the Java local API can be used to extend Nuxeo.

When running in the same JVM as Nuxeo you have access to all Nuxeo API (components and services).

For more information about using Nuxeo internal API, please see the and sections.Customization and Development Extending Nuxeo

All other APIs provide remote access and allow you to call some Nuxeo Services from an external application. These are typically the APIs you
may use to integrate Nuxeo with third party application. For more information about this topic, please see : .Using Nuxeo as a service platform

Content oriented Protocols

You can also access Nuxeo EP content via a "standard" protocol.

Nuxeo EP currently supports:

CMIS,
WebDav,
Windows Sharepoint Services protocol (only the subset used by MS Office and MS Explorer).

Compared to the APIs, these protocols won't give you access to services but directly to the content.

Depending on the chosen protocol, your access to Nuxeo Content will be more or less powerful:

CMIS gives you access to a big subset of the data managed by Nuxeo.
WebDav and WSS mainly map Nuxeo's content as a file-system (with all the associated limitations).

These protocols may be useful in several use cases:

Desktop integration,
To allow a portal or a WCM solution to access Nuxeo's content.

For more information, please see the section dedicated to .Repository access

Connectors

Directories

Inside Nuxeo EP, directories are used to provide a abstraction on all referencial data that can be manipulated inside the application.

These data can be:

users,
groups of users,
fixed list of values (vocabularies),
roles,
...

Basically we try to map all data that can be manipulated like record via directories. For that, directories provide a simple CRUD API and an

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

39
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

abstraction on the actual implementation. This means that the services of the platform do not have to worry about where and how the data is
stored, they just access the API.

Directories comes with several implementations:

SQL Directories that can map SQL tables,
LDAP Directories that can map a LDAP server,
Multi-Directory that allow to combine several directories into a single one.

A frequent use case is also to use the directory abstraction to map a given webservice or application that manages centralized data.
(We provide a connector sample for that.)

Authentication and User management

Authentication and user management is also a typical use case for integration between Nuxeo EP and existing infrastructures:

integrating a Single Sign On system,
integrating an application that manage users profiles,
integrating an application that manage groups.

As seen above, directories provide part of the solution. But in order to be able to integrate a lot of different authentication use cases, Nuxeo EP
authentication system was designed to be very pluggable.

!Sélection_027.png

The initial identification can be done at Java level via JAAS or at Http level via a dedicated filter. The filter is pluggable so that the way of retrieving
credentials can be an adapter to the target system. The JAAS login module is also pluggable so that you can define how the credentials are
validated. By default, credentials are validated against directory that use LDAP, SQL or an external application.

Integration via Nuxeo Event system

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

40
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

When you need to integrate some features of an external application into Nuxeo, or want Nuxeo to push data into an external application, using
Nuxeo Event system is usually a good solution.

UI frameworks
Nuxeo EP proposes different technologies for the client side of the application.

The choice of one technology vs. the other depends on both the project's stakes and its context.

The different technologies available are:
JSF/Seam
WebEngine
Flex client
GWT Client
Shell Client

JSF/Seam

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

41
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

The Nuxeo EP default web UI is based on JSF (a Java EE standard) for the UI component model, and Seam for the navigation and context
management.

Technologies:

Sun JSF 1.2,
Facelets,
JBoss RichFaces 3.2,
JBoss Seam 2.

Key points:
Nuxeo EP's JSF interface is fully modular and very easy to customize:

integrated theme manager,
XML configuration for buttons, tabs, actions, etc.
Form and Widget layout engine.

Typical use case:

Business application,
Document management back-office.

WebEngine

JSF technology is not best suited to create websites with content managed by Nuxeo EP, due to JSF's stateful model, full abstraction of the
HTML/JS code, etc. Thus, Nuxeo has developed a simple yet powerful rendering engine based on Freemarker and JAX-RS: .Nuxeo WebEngine

Technologies:

JAX-RS,
Freemarker,
Java scripting (Groovy or other).

Key points:
Nuxeo WebEngine enables web developers to easily create a customized web interface on top of Nuxeo EP:

Simple template engine,
Direct access to HTML,
Java scripting support,
Lightweight development environment based on Jetty.

Typical use case:
Nuxeo WebEngine is designed to expose Nuxeo EP managed content in a web experience. In many cases, the JSF interface is used for the
back-office management while Nuxeo WebEngine provides the front office interface. Furthermore, with the JAX-RS support, Nuxeo WebEngine
allows rapid creation of REST applications on top of Nuxeo EP.

Flex client

Nuxeo EP provides a Flex/AMF connector allowing an Air/Flex client to connect.

Technologies:

Air/Flex,
AMF remoting integrated via GraniteDS.

Key points:
The Flex technology can be easily deployed, as the equipment rate in flash VM is quite high. The Flash technology allows rapid development of
advanced clients with a rich and user-friendly interface.

Typical use case:
It would be a small application requiring rich media support and a plain user interface for a large audience. For example, this technology has been
used for eLearning applications based on Nuxeo EP.

GWT Client

GWT (Google Web Toolkit) allows the Java development of applications that will be deployed under HTML/JavaScript format.

Nuxeo has integrated the GWT technology:

in the build environment (via Maven),
with the platform via dedicated REST APIs,
with the extension points model (to allow modular development with GWT as it is available within the rest of Nuxeo EP).

Technologies:

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

42
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

Google Web Toolkit 1.5,
JAX-RS to communicate with server.

Key Points:
The GWT technology allows the development of user-friendly and reactive applications with no deployment needed.

From the development side, it is highly productive to be able to code in Java (Java IDE, Type Safety, unit tests) without bothering with classical
RIA related problems (JavaScript debug, multi-browsers support, etc.).

Typical use case:
GWT allows the development of complex interfaces that are difficult to create rapidly with standard web technologies:

Text and image annotation interface,
Tiling client to display and navigate in large images.

Shell Client

The Shell client is based on the client same library than the one embedded in Apogee.

With Nuxeo Shell, the client is presented with a command-line shell and a set of commands to directly access Nuxeo Services and Content
Repository.

Technologies:

Java OSGi,
Groovy Scripting,
Jline for the command line.

Key Points:
The Nuxeo Shell may be used in 2 modes:

the interactive mode (commands line use),
the non-interactive mode (scripts & batches).

The available commands are defined by an extension point and Java classes or by simple Groovy scripts. It is therefore very easy to add
customized commands for each project.

Typical use cases:
The Nuxeo Shell may prove useful in several cases:

administration access:
command line use,
scripting implementation of customized commands.

Exec environment for scheduled commands,
Data recovery tool,
Low level performance test tool.

Deployment options
Here are the different deployment possibilities:

Agile deployment
Simple deployment
Cluster deployment
Multi-VM deployment

Service externalization
Isolating the web layer

Sample deployments
HA deployment and DRP
Offline client
Multi-Instances

Agile deployment

Thanks to Nuxeo Runtime and to the bundle system, Nuxeo EP deployment can be adapted to your needs:

deploy only the bundles you really need,
deploy on multiple servers if needed,
deploy on multiple infrastructure:

server side: JBoss, Tomcat, Jerry or POJO,
client side: Equinox, POJO.

Simple deployment

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

43
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

For a simple deployment you have to:

define the target Nuxeo distribution (in most of the cases Nuxeo DM + some extra plugins),
define the target deployment platform:

full JEE server: JBoss AS,
servlet container: Tomcat,
embeded mode: Jetty.

The Tomcat packaging comes in 2 flavors:

bare Tomcat packaging,
JCA/JTA Tomcat packaging (default): it adds to Tomcat the required infrastructure to manage transaction and JCA polling.

In most of the case, the Nuxeo server is behind a reverse proxy that is used to provide:

https/ssl encryption,
http caching,
url rewritting.

Cluster deployment

In order to manage scale out, Nuxeo EP provides a simple clustering solution.

When using VCS repository storage mode, it is possible to activate the cluster mode. When cluster mode is enabled, you can have several Nuxeo
EP nodes connected to the same database server. VCS cluster mode manages the required cache invalidation between the nodes. There is no
need to activate any application server level cluster mode: VCS cluster mode works even without application server.

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

44
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

Depending on the UI framework used for presentation layer, the network load balancing can be statefull (JSF webapp) or stateless (WebEngine).

Multi-VM deployment

Nuxeo components interact between each others via service interfaces. Since most services can be remotely called via RMI, you can split a
Nuxeo distribution (like DM) in several parts on several JVM.

Of course, this kind of multi-VM deployment is more complex than simple mono-vm deployment:

you need to configure service lookup layout (service groups),
all additional custom plugins must be cleanly packaged.

Nevertheless, this kind of deployment can be interesting to solve specific requirement.

Service externalization

Depending on your use cases, some services may consume more resources than others. For example, if the application needs to do heavy
conversion work or needs to resize a lot of pictures, it may be interesting to isolate theses services:

to prevent batch processing from slowing down interactive processing,
to spread services on more CPUs.

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

45
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

Isolating the web layer

An other use case is to separate Nuxeo bundles into two categories:

bundles that manage persistent transactional data,
bundles that don't.

By doing this split, we have:

A "Stateless server" that runs:
all services without state,
the UI layer (framework and screens associated to features).

A "Stateful server" that runs all persistent services including the Document repository.

This 2 parts packaging provides some advantages:

it allows scaling out of the web layers,
it provides full 3 layers decoupling (Nuxeo can be hosted in a 3 layers DMZs architecture).

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

46
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

Sample deployments

HA deployment and DRP

If you want to provide a Disaster Recovery Plan, you will need to host two separated Nuxeo infrastructures and be sure you can switch from one
to an another in case of problem.

The first step is to deploy two Nuxeo infrastructures on two hosting sites. These infrastructure can be mono-VM, cluster or multi-VM. The key
point is to provide a way for each hosting site to have the same vision of the data:

SQL data stored in the SQL database server,
Filesystem data.

Because Nuxeo storage VCS+Filesystem is safe, you can use a replication system between the two sites. Basically, you can use the
replication/standby solution provided by the Database server you choose. This replication tool just has to be transactional.

For the filesystem, any replication system like RSync can be used.

Because the blobs are referenced by their digest in the database, you don't have to care about synchronization between the DB and FS: in the
worst case, you will have blobs that are not referenced by the DB on the replicated site.

This kind of DRP solution has been successfully tested in production environment using:

PosgreSQL stand-by solution (WAL shipping),
RSync for the file system.

Offline client

Multi-Instances

In some cases, you may want to have several separated instances:

because you have several sub-applications,
because you want to use different kinds of hardware depending on the sub-application,
because you have constraints on hosting in separated DMZ.

A typical use case is when you have an internal application for contribution and viewing, but you also need to let external (internet) users access a
small part of the content. Technically, you could have the same application serving the content depending on the user profile or several
applications sharing the same repository. But in many cases, hosting and security constraints may lead to have two separated hosting platforms:
one for internal and one for external.

In order to achieve that you can leverage the built-in feature for remote publishing between two Nuxeo instances.

These two packaging are somehow badly named since the Stateless server is not really stateless (JSF is statefull for example), but it
does not manage any persistent state.

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

47
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

Performance management for Nuxeo EP
Managing sizing and performance of any ECM application is a tricky job, because each application is different and many factors must be taken
into account. Nuxeo EP is designed to optimize performance. As a consequence, continuous performance testing is part of the Nuxeo quality
assurance process. Results are based on metrics that focus on user experience, such as application response time. The outcome of this
continuous, measured improvement is that Nuxeo EP gives rapid response times even under heavy loads, with thousands of concurrent users
accessing a repository that stores millions of documents.

In this section, we will see the points below:
Performance of Nuxeo EP

Impacting factors
Factors that have little or no impact
Some generic tips for tuning Nuxeo EP

How we manage Nuxeo EP performance
A Toolbox for benchmarking Nuxeo EP
Continuous performance testing via CI
Periodic Benchmark campaigns

Sizing your Nuxeo EP based ECM application
Define your requirements
Setup performance testing from the beginning
Use interpolation when needed

Performance toolbox provided by Nuxeo EP
Benchmarking tools
Metrics to monitor during a bench
Monitoring tools
Nuxeo Metrics Monitoring tools with mbeans

Some example Benchmark results
Goals
Steps
Results overview
Customizing bench

Performance of Nuxeo EP

The first step is to identify which factors do impact performance and which factors do not impact performance.

Impacting factors

See for more details)Remote Plublisher

http://doc.nuxeo.com/x/GATF
http://explorer.nuxeo.org/nuxeo/site/distribution/current/viewBundleGroup/grp:org.nuxeo.ecm.platform.publisher

 Nuxeo Enterprise Platform 5.4 Documentation

48
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

Security policies

The typical behavior of an ECM system is that you can only view a Document if you are allowed to. The same principle applies for creating or
modifying documents. However, the "Access Check" is the most factor that impacts most significantly because the system may need to check for
read access on a very large number of documents.

The default security policy in Nuxeo uses ACLs (Access Control Lists). Depending on the target use cases, you may have very few ACLs (when
ACLs are defined only on top containers) or a lot of ACLs (when they are defined on almost every documents). To be able to deal with both
cases, Nuxeo provides several optimizations in the way ACLs are processed: for example, ACL inheritance may be pre-computed. But depending
on the target use-case, the best solution is not always the same one.

In Nuxeo EP, we also allow to define custom security policy that can be based on business rules. For that too, we provide ways to convert these
business rules into queries so that checks can be done quickly on huge documents repositories.

As security policy is clearly an impacting factor, Nuxeo EP provides a lot of different optimizations. You can then choose the one that fits your
needs.

Presentation layer

The presentation layer is very often the bottle neck of an ECM web application.

It is easy to make mistakes in the display logic (adding costful tests, fetching too much data ...) that can slow down the application. This is
particularly true when using JSF, but even when you use another presentation technology, it's possible to impact performance by wrongly
modifying some templates.

The good news is that Nuxeo's default templates are well tested. However, when modifying Nuxeo's template or add a new custom one, web
developers must be aware of performance issues:

you don't want to have a round trip to database inside a display loop (that's what prefetch is done for),
you don't want a costful business test to be done 20 times per page (that's what Seam context is made for),
you don't want a single page listing 100 000 documents (because there is no user able to use it and that the browser won't be happy),
...

This may seem obvious, but in most cases, you can solve performance issues just by profiling and slightly modifying a few display templates.

Document types

A very common task in an ECM project is to define your own Document Types. In most cases, it will have few or no impact on performances.

However, if you define documents with a lot of meta-data (some people have several hundred meta-data elements) or if you define very complex
schema (like nesting complex types on 4 levels), this can have impact on:

the database : because queries will be more complex,
the display layer : because correctly configuring prefetch will be very important.

Number of documents

As expected, the number of documents in the repository has an impact on performance:

impact on database size, and as a consequence on the database performance,
impact on ACLs management,
possible impacts on UI listings.

This is a natural impact and you cannot exclude this factor when doing capacity planning.

The good news is that Nuxeo's document repository has been tested successfully with several millions of documents with a single server.

Concurrent requests

The raw performance of the platform is not tied to a number of users, but to a number of concurrent requests: 10 hyperactive users may load the
platform more than 100 inactive users.

In terms of modeling the users activity, think in terms of Transaction/s or Request/s: concurrent users is usually too vague.

Factors that have little or no impact

Size of the files

When using Nuxeo's repository, the actual size of the binary files you store does not directly impact the performance of the repository. Since the
binary files are stored on a Binary Store on the file system and not on the Database, impact will be limited to Disk I/O and upload/download time.

Regarding binary file size, the only impacting factor is the size of the full-text content because it will impact the size of the full-text index. But in
most cases, big files (images, video, archives ...) don't have a big full-text content.

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

49
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

Average number of documents per folder

A common question is about the number of documents that can be stored in a Folder node. When you use Nuxeo's VCS repository, this has no
impact on the performance: you can have folders with several thousands of child documents.

When designing your main filing plan, the key question should be more about security management, because your hierarchy will have an impact
on how ACLs are inherited.

Some generic tips for tuning Nuxeo EP

Independent from uses case, some technical factors have an impact on performances:

Application server

Nuxeo EP is available on Tomcat and JBoss servers. Tomcat tends to have better row performance than JBoss.

Tomcat HTTP and AJP connector configuration impact the behavior of the server on load, limiting the value to prevent the servermaxThread
from being overloaded and to keep constant throughput.

Under load the JBoss JTA object store can generate lots of write operation even for read-only access. A simple work around can be to use a
ramdisk for the folder.server/default/data/tx-object-store

Note also that the default maximum pool size for the AJP connector on JBoss is only 40, which can become quickly a bottleneck if there is no
static cache on the frontal HTTP server.

JVM tuning

Always use the latest 1.6 JDKs, they contain performance optimizations.

Log level

Log level must be set to INFO or WARN to reduce CPU and disk writes.

Database

Database choice has a large impact on performance.

PostgreSQL has more Nuxeo optimization than other databases. It is the preferred database platform.

Tuning is not optional, as default configurations are not done for production.

Network

The network between the application and the database has an impact on performance.

Especially on page that manipulates many documents and that generates lots of micro JDBC round trip.

Our advice is to use Gigabit Ethernet connection and check that any router/firewall or IDS don't penalize the traffic.

Here are some example of the command in the same network (MTU 1500) that can give you an idea of the latency added toping -s PACKETSIZE
each JDBC round trip:

Ping packet size Fast Ethernet (ms) Gigabit Ethernet (ms) ratio

default 0.310 0.167 1.8562874

4096 1.216 0.271 4.4870849

8192 1.895 0.313 6.0543131

While the database will process a simple request in less than 0.05ms most of the JDBC time will be spend on the network

from 0.3ms on Gigabit Ethernet to 1.9ms on Fast Ethernet (6 times more).

Note that you can check your network configuration using the ethtool command line.

How we manage Nuxeo EP performance

Now that we have seen that managing performance involves many factors, let's see how we manage this at Nuxeo for Nuxeo EP and its
distributions.

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

50
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

A Toolbox for benchmarking Nuxeo EP

We provide several tools to load test and benchmark Nuxeo EP: see the Tool chapter later in this document.

Continuous performance testing via CI

Benchmarking once is great, but the real challenge is to be sure to detect when performances are impacted by a modification (in the UI, in the
Document Types, ...).

To do so, we use small benchmark tests that are automatically run every night by our CI chain. The test is configured to fail if the performance
results are below the performance results of the previous build.

This fast bench enables to check core and UI regressions on a simple case.

Hudson benching job
Daily bench report
Daily bench monitoring report
Benching script sources

This allows us, for example, to quickly detect when a template has been wrongly modified and lets us quickly correct it before the bad change set
becomes hidden by hundreds of other modifications.

Periodic Benchmark campaigns

Every 2 or 3 months, we run major benchmarking campaigns to tests the platform on the limits.

This is a great opportunity to do careful profiling and eventually introduce new database and Java optimizations.

Sizing your Nuxeo EP based ECM application

In order to correctly size your Nuxeo EP based ECM application, you should:

Define your requirements

You have to define your needs and hypothesis for any factor that can impact the platform performance:

target number of documents in the repository,
target security policy,
target filing plan and ACLs inheritance logic,
target Requests/s.

Setup performance testing from the beginning

Performance benchmarking is not something you should delay to a pre-production phase.

It's far more efficient (and cheaper) to setup performance tests from the beginning.

Start with simple benchmark tests (based on the ones provided by Nuxeo) on a raw prototype and improve them incrementally as you improve
your customization.

Using this approach will help you:

detect the performance issue as soon as possible,
correct small problems when they are still small,
avoid having a lot of mistakes to correct just before going to production.

You can leverage all the standard tests we provide and also the Hudson integration if you want to use Hudson as CI chain provider.

Use interpolation when needed

Nuxeo provides standard benchmark for both small and big documents repositories.

When needed, you can use these results to interpolate results from your tests.

Performance toolbox provided by Nuxeo EP

Benchmarking tools

We use for performance testing. This tools enables us to produce quickly new scenarios.FunkLoad
Here are the main advantages:

An http proxy recorder generates the initial bench script.

http://doc.nuxeo.com/x/GATF
http://funkload.nuxeo.org/

 Nuxeo Enterprise Platform 5.4 Documentation

51
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

FunkLoad comes equipped and ready with "batteries included":
helpers to make assertions,
library to generate random content,
library to share user credentials between threads,
basic monitoring.

Scripts are done in Python which enable complex scenario implementation.
Bench are easily automated using simple Makefile.
FunkLoad produces a and differential report to .detailed report compare two bench results
Nuxeo DM has a Python library to write tests with a "fluid interface pattern" like:

(LoginPage(self).view()
.login('Administrator', 'Administrator')
.getRootWorkspaces()
.createWorkspace('My workspace', 'Test ws')
.rights().grant('ReadWrite', 'members')
.view()
 .logout())

This makes it easy to create new scenarios.

We also use Nuxeo DM addon tools like to populate the document base.nuxeo-platform-importer

Metrics to monitor during a bench

CPU: The iowait or percent of time that CPU is idle during which the system has outstanding disk I/O request can be useful to identify I/O
bottleneck. On multi CPUs, if only one of the CPU is used at 100%, it may be the cause of an overloaded garbage collector.
JVM Garbage Collector throughput: this is the percentage of total time of the JVM not spent in garbage collection.
Disk utilization: to check for device saturation.
JBoss JCA connection pool.
SQL queries that took up most time.

Monitoring tools

sysstat sar for monitoring the system activity (cpu, disk, network, memory ...). Using it can produce a nice PDF reports.kSar
The JBoss service can monitor specific attributes of a MBean periodically and log its value to the filename specified.LoggingMonitor
JVM garbage collector logging using a JAVA_OPTS.
PosgreSQL log_min_duration to log SQL queries.
logchart to produce miscellaneous charts from the sar output, JBoss logs, GC logs and dabatase logs.
pgfouine the PostgreSQL log analyzer which is used by logchart.

Example of a logchart monitoring report

More info on the .Monitoring Nuxeo DM FAQ

Nuxeo Metrics Monitoring tools with mbeans

In , Nuxeo provides the infrastructure that can be used to monitor use of services or class throughnuxeo-runtime-management-metric
mbeans. The mbean displays access counts on methods and the time spent on it. It can also serialize its results in XML.

As an example, we will first see how to configure and monitor access to the Nuxeo repository backend class.

Monitor Nuxeo core backend access

The idea is to plug our monitor class as a proxy of the real Repository class. When a method gets through the proxy, metrics are automatically
added and named with interface and method names. All metrics have an operation "Sample" that provides the metrics you are looking for.

http://doc.nuxeo.com/x/GATF
http://qa.nuxeo.org/funkload-bench/2011/03/31_11-30-54/trunk/report/testReader-20110331T113257/
http://funkload.nuxeo.org/report-example/diff_seam_java_6_vs_5
http://hg.nuxeo.org/addons/nuxeo-platform-importer/file/9104f7d835f1/README.txt
http://pagesperso-orange.fr/sebastien.godard/
http://ksar.atomique.net/linux.html
http://wiki.jboss.org/wiki/Wiki.jsp?page=JBossLoggingMonitor
http://public.dev.nuxeo.com/~ben/logchart/monitor.html
http://pgfouine.projects.postgresql.org/
http://qa.nuxeo.org/funkload-bench/2011/09/08_05-05-20/trunk/monitor/monitor.html
http://doc.nuxeo.org/xwiki/bin/view/FAQ/MonitoringNuxeoDM

 Nuxeo Enterprise Platform 5.4 Documentation

52
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

1.

2.
3.
4.

Modify the file (be careful to modify the right file if you are using templatesconfig/default-repository-config.xml
configuration system) and add this line:

<backendClass>org.nuxeo.ecm.core.storage.sql.management.MonitoredJDBCBac
kend</backendClass>

This class is a proxy to the real backend class. Nuxeo VCS core storage will behave exactly like before. The proxy just
counts and records time spent on each method of the interface, and make it available to the mbean.

To view the result, run jconsole or Visualvm.
Connect to your running Nuxeo repository Java process.
Go to the mbean tab.
In the mbeans "org.nuxeo" you will find all the metrics. MetricEnable contains operations to enable/disable logging and
serialisation. Serialisation is used to have an XML output. Preferences can be set with MetricSerializer operations.

Create your own monitored proxy

The previous example had its proxy class available in Nuxeo EP and the backend class could easily be replaced by modifying an extension point.
However, creating a new proxy class is still easy. Let's try adding a monitor proxy to all the listener to monitor Listener access:

Listener objects are created in .EventListenerDescriptor: initListener

The idea is to create the proxy with and provide the instance to proxy and the Interface class toMetricInvocationHandler.newProxy
monitor.

The proxy will replace the original instance:

public void initListener() throws Exception {
 if (clazz != null) {
 if (EventListener.class.isAssignableFrom(clazz)) {
 inLineListener = (EventListener) clazz.newInstance();
 inLineListener = MetricInvocationHandler.newProxy(
 inLineListener, EventListener.class);
 isPostCommit = false;
 } else if (PostCommitEventListener.class.isAssignableFrom(clazz)) {
 postCommitEventListener = (PostCommitEventListener)
clazz.newInstance();
 postCommitEventListener = MetricInvocationHandler.newProxy(
 postCommitEventListener, PostCommitEventListener.class);
 isPostCommit = true;
 }

Restarting the repository and accessing to the proxy will make the class monitored in the monitoring tool.

When using VCS remote on a deported client, the class to used is .MonitoredNetBackend

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

53
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

1.
2.

3.

4.
5.
6.

7.
8.

Some example Benchmark results

Goals

Demonstrate adequate response times for various document retrieval and insertion operations on a large storage of 10 million documents.

Steps

Tune the database following tips in the Nuxeo PostgreSQL .FAQ
Tune Nuxeo DM: for mass import, we disable the fulltext indexing (as described in the) and disable the"Mass import specific tuning" FAQ
ACL optimization ().NXP-4524
Import content: mass import is done using a multi-threaded importer to create File document with an attached text file randomly
generated using a French dictionary. Only a percentage of the text file will be indexed for the full text, this ratio simulate the proportion of
text in a binary format.
Sources of the nuxeo-platform-importer
Rebuild fulltext as described in the ."Mass import specific tuning" FAQ
Generate random ACLs on documents. This can be done with a simple scripts that generate SQL inserts into the ACL table.
Enable the read ACLs optimization, performing the SQL command:

SELECT nx_rebuild_read_acls();

Enable the ACL optimization ().NXP-4524
Bench using the same scripts as in continuous integration for writer and reader. In addition we have a navigation bench that randomly
browses folders and documents.

Results overview

The base was successfully loaded with:

10 million of documents,
1TB of data.

Below are some average times:

Accessing a random document using the web interface under load of 250 concurrent users accessing the system with 10Nuxeo DM
seconds pause between requests: 0.6s.
Accessing a document that has already been accessed, under load: 0.2s.
Accessing a random document or download attached file using a simple application: 0.1s.WebEngine
It can handle up to 100 req/s which can be projected to at least 1000 concurrent users.
Creating a new document using the web interface under load: 0.8s.Nuxeo DM

This bench showed no sign of being impaired by the data volume once the data is loaded from disk.

http://public.dev.nuxeo.com/~ben/bench-10m/

Customizing bench

The bench procedure can be customized to validate customer installation:

The mass importer tool can be used as a template to inject a customized document type instead of File documents.
Scripts can be modified to have realistic scenarios.
Scripts can be combined to create realistic loads.

Installation and Administration
Welcome to the Nuxeo installation and administration guide.

In this guide, you will find all the information to install and manage your Nuxeo application based on the Nuxeo platform: how to install it, how to
configure a database, install new packages from the Nuxeo Admin Center etc. The installation and administration principles described in this
guide also apply to the Nuxeo EP-based applications: Nuxeo DM, Nuxeo DAM, Nuxeo CMF applications.

http://doc.nuxeo.com/x/GATF
http://www.nuxeo.org/xwiki/bin/view/FAQ/PostgreSQLSettings
http://www.nuxeo.org/xwiki/bin/view/FAQ/PostgreSQLSettings
https://jira.nuxeo.org/browse/NXP-4524
http://hg.nuxeo.org/addons/nuxeo-platform-importer/
http://www.nuxeo.org/xwiki/bin/view/FAQ/PostgreSQLSettings
https://jira.nuxeo.org/browse/NXP-4524
http://public.dev.nuxeo.com/~ben/bench-10m/

 Nuxeo Enterprise Platform 5.4 Documentation

54
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

1.
2.
3.

Quick start – For evaluation purpose
You want to evaluate or test the application? Here the
main steps you should follow to quickly install your Nuxeo
application and get ready to use it.

Check out the requirements
Install
Start

Full installation – For advanced testing and

production purpose
You want to install the application to use it or test it in a
production environment? Follow the steps below:

Hardware and Software requirements
Installation
Setup
Database
Authentication, users and groups
HTTP and HTTPS reverse-proxy configuration
Advanced configuration
Server start and stop
Monitoring
Nuxeo Shell (admin's best friend)
Backup and restore
Import a file system
Upgrading your Nuxeo Version

Hardware and Software requirements
This section presents information about the running environment for a Nuxeo server. Listing all required software, giving a recommended
configuration and listing some others, known as operational, this sections aims at helping you to validate or define your production environment.
However the list is not exhaustive and needs to be completed with the users' experience.

Outline of this document:
Requirements

Check your Java version
Install Java

For Windows users
For Linux users
For Mac OS X users

Recommendations
Hardware configuration
Default configuration
For optimal performances
Known working configurations

OS
JVM
Storage backends
LDAP
Browsers

Requirements

Nuxeo EP can run on Linux, Mac OS X and Windows operating systems.

All you need for a quick start is a . As of Nuxeo EP 5.4 and the applications based on itSun Java Development Kit (JDK) (a JRE is not enough)
such as Nuxeo DM 5.4 or Nuxeo DAM 1.2, (also called Java 1.6) is required.Java 6

Check your Java version

We currently support Sun's JDK, don't hesitate to contact us if you need us to support a JDK from another vendor.

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

55
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

1.

2.

1.
2.

To check that you have the right version of Java
Open a terminal:

on Linux or Mac OS X: open a terminal.
on Windows: press "windows" key + r, type "cmd" (or "command') in the run window and press "OK" or open the
"Prompt command" from "Start > Programs > Accessories" menu.

Type "java -version" and press "Enter".
If Java is correctly installed on your computer, the name and version of your Java virtual machine is displayed:

$ java -version
java version "1.6.0_20"
Java(TM) SE Runtime Environment (build 1.6.0_20-b02-279-10M3065)
Java HotSpot(TM) 64-Bit Server VM (build 16.3-b01-279, mixed mode)

If Java is not installed on you computer, it fails to display the Java version. Then, you need to install Java (see below).
If Java is installed but not included in the PATH, it fails to find the Java command. Then, you need to add $JAVA_HOME/bi

 in your PATH (see).n/ How do I set or change the PATH system variable?

Install Java

For Windows users

If the required version of Java is not installed on your computer:
Download it from Sun website and choose the appropriate platform for your hardware and Windows version.
Run the downloaded .exe file and follow the instructions displayed.

For Linux users

On a modern Linux distribution, you can now install Sun Java 6 with the packaging system of your distribution (using rpm, apt, yum, etc.).

If the JDK from Sun is not available for your OS, you can still .download it from Sun website

For Mac OS X users

An appropriate version of Java should already be installed on your computer if you are using Snow Leopard (Java 6).

Recommendations

Hardware configuration

Nuxeo applications are designed to be scalable and can thus to be deployed on many servers. They can be installed on only one server for a
start, and can also easily be installed on many servers. The constant is that there is the need to have one modern server with good performances.
Then the other servers can be more lower-end.

So the numbers below are given for the one needed high-end server.

RAM: 2 GB is the minimum requirement for using Nuxeo,
CPU: Intel Core 2 or equivalent and better.
You might want to avoid machines from the Intel Pentium 4 Xeon series since some models have a too small amount of cache. This
impairs performance greatly compared to other CPU architecture of the same generation. (Intel Pentium 4 servers are quite widespread
because of an attractive price policy.)
Storage (disk) space: the minimum Nuxeo installation, along with the needed server and libs, takes something between 200 MB and
280 MB on a filesystem. Then, the final size will of course depend on the amount of data that will be stored in Nuxeo. A safe bet (until we
provide better numbers) is to consider data space ratio of 1.5 GB to 2 GB.

Default configuration

The default persistence configuration is lightweight and easy to use, but it is not made for performance.

Nuxeo EP 5.4 uses:

Since Ubuntu 10.4 (Lucid Lynx), sun-java-6 is available from partners software sources (apt repositories).

http://doc.nuxeo.com/x/GATF
http://www.java.com/en/download/help/path.xml
http://java.sun.com/javase/downloads/widget/jdk6.jsp
http://java.sun.com/javase/downloads/widget/jdk6.jsp

 Nuxeo Enterprise Platform 5.4 Documentation

56
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

H2 for SQL Data (directories, JBPM, Relations ...),
Filesystem persistence with for the Document repository.VCS

For optimal performances

Linux 64 bits,
PostgreSQL 8.4 or 9.0,
Use PostgreSQL for document repository and all other services.

Have plenty of RAM (>= 4 GB).

Known working configurations

OS

Debian GNU/Linux 5.0 Lenny
Linux Ubuntu 32 and 64 bits: Edgy Eft (6.10), Feisty Fawn (7.04), Gutsy Gibon (7.10), Hardy Heron (8.04 LTS), Intrepid Ibex (8.10),
Jaunty Jackalope (9.04), Karmic Koala (9.10), Lucid Lynx (10.04 LTS), Maverick Meerkat (10.10).
Linux Mandriva 2008.1
Unix
Mac OS X Leopard (10.5), Snow Leopard (10.6)
Microsoft Windows 2000, Windows 2003 server 32 and 64 bits, Windows XP, Windows 7

JVM

Sun JDK 6, 64 bits recommended especially on Windows environment.

Storage backends

Different backends may be set as well for Nuxeo Core repository as for all other Nuxeo services that persist data. Here is a list of known working
backends:

PostgreSQL 8.3, 8.4 or 9.0
MySQL 5.1
Oracle 10g R2 (10.2.0.5) or 11g R2 (11.2.0.1)
Microsoft SQL Server 2005
H2 (this is the default embedded database)

LDAP

OpenLDAP
OpenDS
Microsoft Active Directory

Browsers

Nuxeo applications can be used with the browsers below.

IE 7 and greater
Firefox 3.5 and greater
Google Chrome 3 and greater
Safari 4 and greater

Installation
Nuxeo applications can come in different packages. Depending on the Nuxeo product you downloaded and your favorite OS, you may have to
install:

a zip archive (works on any operating system),
a Windows installer (.exe),
a virtual machine image (works on any operating system),
a .deb package (works on Linux Debian and Ubuntu).

The instructions below are application to any application based on Nuxeo EP: Nuxeo DM, Nuxeo DAM or a Nuxeo CMF application.

With Nuxeo EP 5.1 or 5.2, configure the document repository to externalize the blobs to filesystem.

Browser extensions for Drag & Drop and Live Edit are available for Internet Explorer and Firefox only.

http://doc.nuxeo.com/x/GATF
https://doc.nuxeo.com/display/GLOS/VCS

 Nuxeo Enterprise Platform 5.4 Documentation

57
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

How to install a Nuxeo application from the .zip archive
How to install a Nuxeo application from the Windows installer
How to install a Nuxeo Virtual machine image
How to install a Nuxeo application from the APT repository for Debian and Ubuntu

How to install a Nuxeo application from the .zip archive

The zip archive can be installed on any operating system. All Nuxeo applications are available as zip archive.

To install a Nuxeo zip archive:

Unzip the .zip archive using your favorite tool.

What's next?
You want to evaluate the application? You can now .start the server
You want to do a complete installation, compatible for a production environment? You should now .prepare your environment

How to install a Nuxeo application from the Windows installer

For Windows users, Nuxeo applications are available with a Windows installer that guides you in the install process.

To install a Nuxeo application using the Windows installer:

To install the application using the Windows installer (.exe), double-click on the .exe installer you downloaded and follow the
instructions displayed.

What's next?
You want to evaluate the application? You can now .start the server
You want to do a complete installation, compatible for a production environment? You should now .prepare your environment

How to install a Nuxeo Virtual machine image

Nuxeo applications are available as ready-to-use virtual machine images from nuxeo.com (hhttp://www.nuxeo.com). VM images are available for
VMWare and Virtual Box. They provide a full environment (OS, database…) and all required dependencies to make the Nuxeo application work.

To install the Nuxeo virtual machine image and start Nuxeo:

On Windows, because of the limitation on paths length, it is recommended to extract the content of the archive at root of
.C:

For applications based on Nuxeo EP 5.4.1 and 5.4.2
On Windows 7, because of rights issues, it is highly recommended to install your Nuxeo application at the root of inC:
order for your application to restart correctly at the end of the .startup wizard steps

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

58
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

1.

2.

3.

Unzip the downloaded package.
You get a folder with the required file for the virtual machine image to run.
Start the virtual machine image in your virtual machine application by double-clicking on it.
The VM image starts.

Then, the Nuxeo application automatically starts.

When the Nuxeo application is started, it displays the address at which it is available.

In your browser, type the indicated address.

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

59
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

1.

1.
2.

3.

4.

5.
6.

If you're using an application based on the version 5.4.0 of the Nuxeo platform, the Nuxeo application login page is
displayed: log into the application using the user name and the password.Administrator Administrator
If you're using an application based on the version 5.4.1+ of the Nuxeo platform, the is displayed to help youstartup wizard
configure your application.

How to install a Nuxeo application from the APT repository for Debian and Ubuntu

Installing a Nuxeo application using the APT sources for Debian and Ubuntu installs and configures the application, but it also installs all required
dependencies for an optimal use of the application. Here we will take the example of Nuxeo DM.

You can either install the Nuxeo application using the OS graphical user interface or from the terminal.

Installing from the APT sources using the User graphical interface:

Click on "System/Administration/Software Sources".
Activate multiverse and partner sources for JDK Sun install.
Multiverse is usually in the "Ubuntu Software" tab, and the partner sources are usually in the "Other Software" tab.
If running Ubuntu LTS, Nuxeo DM is published in the Canonical partner repository, so you can jump to step 5. For other
Ubuntu versions, and import it in the "Authentication" tab.download the Nuxeo key
Add the Nuxeo APT repository: on the "Other Software" tab, add " " todeb lucid releaseshttp://apt.nuxeo.org/
the sources.
Click on .apt://nuxeo-dm
Follow the instructions displayed.
If it's your first install, you can configure:

the bind address,
the port,
the database (a preconfigured PostgreSQL database is suggested by default).

The application is installed as a service. It is automatically started and set to automatically start at boot.

Shell root access
Since 5.4.2: the password for the root and nuxeo users are generated the first time you start the virtual machine
and are displayed on the console.
Before 5.4.2: for system administration, there is no password for root, you have to log in using nuxeo/nuxeo
(user/password) then use "sudo".

This requires X11.

http://doc.nuxeo.com/x/GATF
https://doc.nuxeo.com/display/NXDOC54/Setup#Setup-wizard
https://help.ubuntu.com/community/Repositories/Ubuntu#Adding%20Canonical%20Partner%20Repositories
http://apt.nuxeo.org/nuxeo.key
http://apt.nuxeo.org/
apt://nuxeo-dm

 Nuxeo Enterprise Platform 5.4 Documentation

60
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

1.

2.

3.

4.

5.

6.

Installing from the APT sources from the terminal:
Add the Ubuntu partner repository:

sudo apt-add-repository "deb http://archive.canonical.com/ubuntu lucid
partner"

If you're running Ubuntu LTS, Nuxeo DM is published in the Canonical partner repository, so you can jump to step 4.
For other Ubuntu versions, continue to the next steps.
Import the Nuxeo key:

wget -q -O- http://apt.nuxeo.org/nuxeo.key | sudo apt-key add -

Add the Nuxeo APT repository.

sudo add-apt-repository "deb http://apt.nuxeo.org/ lucid releases"

Update your APT cache.

sudo apt-get update

Install Nuxeo DM.

sudo apt-get install nuxeo-dm

Follow the instructions displayed.
If it's your first install, you can configure:

the bind address,
the port,
the database (a preconfigured PostgreSQL database is suggested by default).

The application is installed as a service. It is automatically started and set to automatically start at boot.

Install and set up related software

Nuxeo applications use external software for some features. They need to be installed on the server in addition to Nuxeo application.

Here is the list of additional resources you may want to install:

OpenOffice.org and pdftohtml: used for web preview and annotations of office documents,
ImageMagick: used for preview and tiling of picture documents,
Ffmpeg: for Video features (needed for Nuxeo DAM only),
Gimp and UFRaw: for RAW format images (needed for Nuxeo DAM only),
libwpd: used for processing WordPerfect documents.

Under Debian or Ubuntu, all of this can be installed by the following command:

If you don't have , which is a non-standard command, create a file named "add-apt-repository /etc/apt/s
 and write into: .ources.list.d/nuxeo.list deb lucid releaseshttp://apt.nuxeo.org/

http://doc.nuxeo.com/x/GATF
http://apt.nuxeo.org/

 Nuxeo Enterprise Platform 5.4 Documentation

61
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

1.

2.

3.

1.
2.

3.

sudo apt-get install sun-java6-jdk imagemagick ufraw poppler-utils openoffice.org
ffmpeg libwpd-tools

Set up OpenOffice/LibreOffice and pdftohtml for preview and annotations on Office documents

Installing OpenOffice/LibreOffice and pdftohtml on the server is only required if you need to use preview (and then possibly annotations) on PDF
and office documents.

Download and install the following optional components:
PDFtoHTML from (necessary for PDF documents preview and annotations)http://sourceforge.net/projects/pdftohtml/files/
OpenOffice.org 3.x or greater. Available from (necessary for office documents preview andhttp://www.openoffice.org/
annotations)
Or LibreOffice 3.x or greater. Available from (necessary for office documents preview and annotations)http://www.libreoffice.org/

Start the OpenOffice/LibreOffice server (on a single line):

soffice.exe -headless -nofirststartwizard
-accept="socket,host=localhost,port=8100;urp;StarOffice.Service"

Restart the server after launching OpenOffice/LibreOffice server.

More information about the Nuxeo Office daemon
The deprecated OOoDaemonService has been replaced by OOoManagerService. The configuration for the new service can be found in $NUXEO
_HOME/templates/common/config/ooo-manager-config.xml

Set up ImageMagick for picture tiling features

The image tiling used in the preview of large images, and so for annotations, needs the installation of the software. Please seeImageMagick
Nuxeo-Book chapter . Requirements (ie: ImageMagick 6.3.7 or later) are defined in the installation section.about "Image tiling"

Set up ffmpeg

To enable video features, you must install ffmpeg on the server. This is required from version 1.1 of Nuxeo DAM, not for Nuxeo DAM 1.0.

To install ffmpeg:

Download ffmpeg from .http://ffmpeg.arrozcru.org/autobuilds/
Extract the ffmpeg archive into a new folder named for instance.C:\ffmpeg

On Windows, you need to add the ffmpeg environment variable:

Right click on the "My Computer" icon and click on .Properties
On the "Advanced" tab, edit the system variable and add . Path ;C:\ffmpeg\bin

If OpenOffice/LibreOffice is already installed on your server, Nuxeo applications come with a daemon that should automatically
start it. More information about the daemon configuration below.

If using LibreOffice, you have to add the path to the executable in your nuxeo.conf: jod.office.home=/path/to/libreof
.fice

The archives provided by this website should be decompressed with: .7-Zip

Don't forget the semicolon at the end of existing values.

http://doc.nuxeo.com/x/GATF
http://www.libreoffice.org/
http://www.imagemagick.org/
http://doc.nuxeo.org/5.3/books/nuxeo-book/html/admin-imaging.html
http://ffmpeg.arrozcru.org/autobuilds/
http://www.7-zip.org/

 Nuxeo Enterprise Platform 5.4 Documentation

62
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

3.

Set up Gimp and UFRaw

To enable RAW formats in a Nuxeo application, you need to download and install the following optional components:

Gimp (needed for UFRaw) 2.6.7 or greater from Gimp Win at SourceForge
UFRaw from UFRaw at SourceForge

Set up libwpd

To enable processing of WordPerfect documents, you need to download and install .libwpd available at SourceForge

Debian users: install libwpd-tools

Install the application as a Windows service

Overview

Installing Nuxeo as a Windows service is independent of Nuxeo. So, this is no longer in our development scope since Nuxeo 5.4.

Multiple solutions are available, here are some of them, given without any warranty.

Prerequisites

In order to run as a service, you have to manage the directory rights for the super-user running the service. There are behavior changes
depending on the Windows version.

Once a batch is installed as a service, it cannot be changed: you must first uninstall it, then edit and reinstall in order to change its
content.
So, it's generally a good idea to write a batch file wrapping calls to nuxeoctl.bat and install that NuxeoWrapper.bat as a service, which
will be responsible of starting Nuxeo with the wanted user and environment parameters.

http://doc.nuxeo.com/x/GATF
http://gimp-win.sourceforge.net/stable.html
http://sourceforge.net/project/platformdownload.php?group_id=127649&sel_platform=3514
http://libwpd.sourceforge.net/download.html

 Nuxeo Enterprise Platform 5.4 Documentation

63
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

1.
2.

3.

1.

1.
2.
3.

1.

1.

1.

1.

Also, take care that network directories are usually not available when a service is executing. So, if you need to use some, you will have to mount
them in the batch script before starting Nuxeo.

The database used by Nuxeo has to be installed as a service and started before the Nuxeo service.

Available solutions

Yet Another Java Service Wrapper (recommended)

YAJSW is a Java centric implementation of the (JSW).Java Service Wrapper by tanuki
It aims at being mostly configuration compliant with the original. YAJSW is LGPL licensed.
That solution seems to be the more flexible, robust and multi-OS compliant.

Install Nuxeo as a Windows service using YAJSW

Download YAJSW and unzip the archive.
Set the system environment variable to the location of your nuxeo.conf file, something like NUXEO_CONF %NUXEO_HOME%\bin\nuxeo.c

.onf
Start Nuxeo DM from the command line:

nuxeoctl.bat nogui start

Once the server is started, you'll get a message like below where XXXX is the process ID of the running Nuxeo application:

Server started with process ID XXXX.

Start a Command Prompt as an Administrator.
Go to folder.%YAJSW_HOME%\bat
Execute the command with the process ID as parameter:genConfig

genConfig.bat XXXX

The configuration is written in the file .%YAJSW_HOME%\conf\wrapper.conf

Stop Nuxeo DM:

nuxeoctl.bat nogui stop

Execute your wrapped application as console application by calling this command and check your application is accessible:

runConsole.bat

Edit the file and set your custom values for these parameters:%YAJSW_HOME%\conf\wrapper.conf

Name of the service
wrapper.ntservice.name=NuxeoDM
Display name of the service
wrapper.ntservice.displayname=Nuxeo DM
Description of the service
wrapper.ntservice.description=Service to manage Nuxeo DM

To install the application as service call, execute:

http://doc.nuxeo.com/x/GATF
http://yajsw.sourceforge.net/
http://wrapper.tanukisoftware.org/
http://sourceforge.net/projects/yajsw/files/

 Nuxeo Enterprise Platform 5.4 Documentation

64
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

installService.bat

Your service is installed and you can run Nuxeo DM from its service ("Windows Computer Management > Services" on Windows 7).

JBoss Native Windows (aka JBossSVC, JBossService and JavaService)

Deprecated Nuxeo scripts managing install as a Windows service are publicly available at .https://svn.nuxeo.org/nuxeo/tools/win32Installer/trunk/

They were based on which is now not recommended because of a number of defects. However, it was relatively easy toJBoss Native Windows
use and provide a quick solution.

Here's the content of :jboss-native-2.0.4/bin/service.bat

@echo off
REM JBoss, the OpenSource webOS
REM
REM Distributable under LGPL license.
REM See terms of license at gnu.org.
REM
REM ---
REM JBoss Service Script for Windows
REM ---

@if not "%ECHO%" == "" echo %ECHO%
@if "%OS%" == "Windows_NT" setlocal
set DIRNAME=%CD%

REM
REM VERSION, VERSION_MAJOR and VERSION_MINOR are populated
REM during the build with ant filter.
REM
set SVCNAME=NuxeoEP
set SVCDISP=NuxeoEP
set SVCDESC=Nuxeo 5.3.0-GA / JBoss Application Server 4.2.3 GA / Platform: Windows 64
set NOPAUSE=Y

REM Suppress killing service on logoff event
set JAVA_OPTS=-Xrs

REM Figure out the running mode

if /I "%1" == "install" goto cmdInstall
if /I "%1" == "uninstall" goto cmdUninstall
if /I "%1" == "start" goto cmdStart
if /I "%1" == "stop" goto cmdStop
if /I "%1" == "restart" goto cmdRestart
if /I "%1" == "signal" goto cmdSignal
echo Usage: service install^|uninstall^|start^|stop^|restart^|signal
goto cmdEnd

REM jbosssvc retun values
REM ERR_RET_USAGE 1
REM ERR_RET_VERSION 2
REM ERR_RET_INSTALL 3

Nuxeo JBoss Service Script for Windows

http://doc.nuxeo.com/x/GATF
https://svn.nuxeo.org/nuxeo/tools/win32Installer/trunk/
http://community.jboss.org/wiki/JBossNativeWindows
https://svn.nuxeo.org/nuxeo/tools/win32Installer/trunk/jboss-native-2.0.4/bin/service.bat

 Nuxeo Enterprise Platform 5.4 Documentation

65
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

REM ERR_RET_REMOVE 4
REM ERR_RET_PARAMS 5
REM ERR_RET_MODE 6

:errExplain
if errorlevel 1 echo Invalid command line parameters
if errorlevel 2 echo Failed installing %SVCDISP%
if errorlevel 4 echo Failed removing %SVCDISP%
if errorlevel 6 echo Unknown service mode for %SVCDISP%
goto cmdEnd

:cmdInstall
jbosssvc.exe -imwdc %SVCNAME% "%DIRNAME%" "%SVCDISP%" "%SVCDESC%" service.bat
if not errorlevel 0 goto errExplain
echo Service %SVCDISP% installed
goto cmdEnd

:cmdUninstall
jbosssvc.exe -u %SVCNAME%
if not errorlevel 0 goto errExplain
echo Service %SVCDISP% removed
goto cmdEnd

:cmdStart
REM Executed on service start
del .r.lock 2>&1 | findstr /C:"being used" > nul
if not errorlevel 1 (
 echo Could not continue. Locking file already in use.
 goto cmdEnd
)
echo Y > .r.lock
jbosssvc.exe -p 1 "Starting %SVCDISP%" > run.log
call run.bat -b 0.0.0.0 < .r.lock >> run.log 2>&1
jbosssvc.exe -p 1 "Shutdown %SVCDISP% service" >> run.log
del .r.lock
goto cmdEnd

:cmdStop
REM Executed on service stop
echo Y > .s.lock
jbosssvc.exe -p 1 "Shutting down %SVCDISP%" > shutdown.log
call shutdown -S < .s.lock >> shutdown.log 2>&1
jbosssvc.exe -p 1 "Shutdown %SVCDISP% service" >> shutdown.log
del .s.lock
goto cmdEnd

:cmdRestart
REM Executed manually from command line
REM Note: We can only stop and start
echo Y > .s.lock
jbosssvc.exe -p 1 "Shutting down %SVCDISP%" >> shutdown.log
call shutdown -S < .s.lock >> shutdown.log 2>&1
del .s.lock
:waitRun
REM Delete lock file
del .r.lock > nul 2>&1
REM Wait one second if lock file exist
jbosssvc.exe -s 1
if exist ".r.lock" goto waitRun

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

66
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

echo Y > .r.lock
jbosssvc.exe -p 1 "Restarting %SVCDISP%" >> run.log
call run.bat < .r.lock >> run.log 2>&1
jbosssvc.exe -p 1 "Shutdown %SVCDISP% service" >> run.log
del .r.lock
goto cmdEnd

:cmdSignal
REM Send signal to the service.
REM Requires jbosssch.dll to be loaded in JVM
@if not ""%2"" == """" goto execSignal
echo Missing signal parameter.
echo Usage: service signal [0...9]
goto cmdEnd
:execSignal
jbosssvc.exe -k%2 %SVCNAME%
goto cmdEnd

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

67
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

:cmdEnd

Here is another implementation from JBoss, independent of the OS architecture (64bits or not): https://svn.nuxeo.org/nuxeo/tools/win32Installer/tr
.unk/service/

Tomcat Service Install/Uninstall script

Using the Tomcat distribution of Nuxeo, you will find a script in the directory that could be adapted to install Nuxeo as aservice.bat bin
Windows service.

JavaServiceWrapper by Tanuki

Tanuki's library provides , the easier is to use the WrapperSimpleAppmultiple methods for integrating a software as a service on various OS
helper class to launch the application: see .the example of JBoss installed as a Windows service
It requires to unzip the downloaded wrapper file, configure a file pointing to , then write a wrapper.conf %NUXEO_HOME%\bin\nuxeoctl.bat

 file for managing test/install/uninstall:wrapper.bat

REM Test:
wrapper.exe -c %NUXEO_HOME%\wrapper\wrapper.conf

REM Install:
wrapper.exe -i %NUXEO_HOME%\wrapper\wrapper.conf

REM Uninstall:
wrapper.exe -r %NUXEO_HOME%\wrapper\wrapper.conf

This solution is known to work well but is sadly not redistributable for us because of its GPL/Commercial license.

.NET InstallUtil

.NET framework provides an tool for installing/uninstalling services.InstallUtil.exe

REM Install
InstallUtil /i %NUXEO_HOME\bin\service.bat

REM Uninstall
InstallUtil /u %NUXEO_HOME\bin\service.bat

You may have a look at for managing thathttp://msdn2.microsoft.com/en-US/library/system.configuration.install.managedinstallerclass.aspx
programmatically.

Configuring your Nuxeo application as a daemon on Debian

The procedure described here is targeted for the Debian Etch distribution, and should be valid for any Debian-based GNU/Linux distribution such
as Ubuntu. In other GNU/Linux distributions some commands may be different.

Download a script among those:

Both were licensed under LGPL and so redistributable but there are not fully satisfying.

JavaServiceWrapper usage

InstallUtil usage

There are some disadvantages such as failures in case of multiple frameworks installed and frontward/backward incompatibilities.

http://doc.nuxeo.com/x/GATF
https://svn.nuxeo.org/nuxeo/tools/win32Installer/trunk/service/
https://svn.nuxeo.org/nuxeo/tools/win32Installer/trunk/service/
http://wrapper.tanukisoftware.com/doc/english/integrate.html
http://wrapper.tanukisoftware.com/doc/english/integrate-simple-win.html
http://msdn2.microsoft.com/en-US/library/system.configuration.install.managedinstallerclass.aspx

 Nuxeo Enterprise Platform 5.4 Documentation

68
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

Nuxeo DM init.d script
Nuxeo DAM init.d script
Nuxeo CMF init.d script

Remove from the filename and replace the following variables with the appropriate values: , , .init @@NUXEO_USER@@ @@NUXEO_ETC@@ @@NUXE
 and .O_PID@@ @@NUXEO_HOME@@

Or create a Shell script by copying and adapting the following sample:/etc/init.d/nuxeo

BEGIN INIT INFO
Provides: nuxeo
Required-Start: $local_fs $remote_fs $network $syslog
Required-Stop: $local_fs $remote_fs $network $syslog
Default-Start: 2 3 4 5
Default-Stop: 0 1 6
Short-Description: Start/stop Nuxeo
END INIT INFO

DESC="Nuxeo"

NUXEO_USER=nuxeo
NUXEO_CONF=/etc/nuxeo/nuxeo.conf
NUXEO_SERVER_HOME=/opt/nuxeo
NUXEO_LOG_HOME=/var/run/nuxeo/log/

export NUXEO_CONF
export NUXEO_SERVER_HOME
export NUXEO_LOG_HOME

. /lib/init/vars.sh

. /lib/lsb/init-functions

PIDFILE=$NUXEO_LOG_HOME"/nuxeo.pid"

pidof_nuxeo() {
 if [-e "$PIDFILE"]; then
 cat ${PIDFILE}
 return 0
 else
 return 1
 fi
}

create_pid_dir() {
 mkdir -p $NUXEO_LOG_HOME
 chown nuxeo:nuxeo $NUXEO_LOG_HOME
}

Change ulimit to minimum needed by Nuxeo
ulimit -n 2048

case "$1" in
 start)
 log_daemon_msg "Starting $DESC"
 create_pid_dir
 su $NUXEO_USER -m -c $NUXEO_SERVER_HOME"/bin/nuxeoctl startbg"
 ES=$?
 log_end_msg $ES
 ;;

http://doc.nuxeo.com/x/GATF
http://hg.nuxeo.org/tools/nuxeo-packaging/raw-file/5.4/debian/resources/dm/common/debian/nuxeo-dm.init
http://hg.nuxeo.org/tools/nuxeo-packaging/raw-file/5.4/debian/resources/dam/common/debian/nuxeo-dam.init
http://hg.nuxeo.org/tools/nuxeo-packaging/raw-file/5.4/debian/resources/cmf/common/debian/nuxeo-cmf.init

 Nuxeo Enterprise Platform 5.4 Documentation

69
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

 stop)
 log_daemon_msg "Stopping $DESC"
 su $NUXEO_USER -m -c $NUXEO_SERVER_HOME"/bin/nuxeoctl stop"
 ES=$?
 log_end_msg $ES
 ;;
 restart)
 create_pid_dir
 su $NUXEO_USER -m -c $NUXEO_SERVER_HOME"/bin/nuxeoctl restart"
 ;;
 force-reload)
 create_pid_dir
 su $NUXEO_USER -m -c $NUXEO_SERVER_HOME"/bin/nuxeoctl restart"
 ;;
 status)
 PID=$(pidof_nuxeo) || true
 if [-n "$PID"] ; then
 echo "$DESC is running (pid $PID)."
 exit 0
 else
 echo "$DESC is not running."
 exit 1
 fi
 ;;
 *)
 echo "Usage: $0 {start|stop|restart|force-reload|status}" >&2
 exit 3

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

70
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

 ;;
esac

Then enable the autostart creating the links in the rcX.d directories running the command (as root):

$ update-rc.d nuxeo defaults

Now restart the machine and verify that nuxeo is started automatically looking at the log file.

If you want to remove the automatic startup use the command (as root):

$ update-rc.d -f nuxeo remove

You can manage the service with the following command:

/etc/init.d/nuxeo [status|start|stop|...]

Setup
Nuxeo provides you with easy access to the configuration of your Nuxeo server, thanks to the Admin Center and the Startup Wizard available for
applications based on Nuxeo EP 5.4.1. For advanced configuration or a simple review, manual edition of Nuxeo's configuration file, called nuxeo

, and a is also available..conf template system
Initial setup of your application with the Startup Wizard
Update the application's configuration using the Admin Center
Manual edition of Nuxeo configuration file nuxeo.conf

Initial setup of your application with the Startup Wizard

For applications based on Nuxeo EP 5.4.1 (such as Nuxeo DM 5.4.1), when you first start your Nuxeo server and go the URL http://localhost:808
, a Startup Wizard will guide you to the main configuration steps. For each step, a default setting is proposed that enables you to test the0/nuxeo

application. You can change this default configuration to adapt it to specific environments.

The settings defined during the initial setup can be changed afterward or by manually.using the Admin Center editing Nuxeo's configuration file

Server's general settings
This step enables you to change the default IP address of the server and where the logs and data are stored.

The Startup wizard will be run only if the configuration sets . You can edit the value in order to replay thenuxeo.wizard.done=false
wizard (using the Admin Center or editing the nuxeo.conf file manually).

http://doc.nuxeo.com/x/GATF
http://localhost:8080/nuxeo
http://localhost:8080/nuxeo

 Nuxeo Enterprise Platform 5.4 Documentation

71
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

Proxy settings
Some features of Nuxeo applications requires to access the Internet. That's the case of the Update Center from which you can access to the
Marketplace add-ons and plugins, updates for your application, your Studio customizations.

Database settings
Nuxeo applications embed a database by default, called H2/Derby. This database enables you to fully test and evaluate the application. However
it is not recommended to use this embedded database for production and load testing. Select the database you want to use and provide the
connection information to the database.
Possible databases are:

PostgreSQL,
Oracle,
MS SQL Server,
MySQL.

SMTP settings
Nuxeo applications include email alert features. By default, no SMTP configuration is enabled and so email alerts won't be sent to users. You can
report to the for more information about the SMTP configuration.email alerts section

http://doc.nuxeo.com/x/GATF
https://doc.nuxeo.com/display/NXDOC54/Recommended+configurations#Recommendedconfigurations-Enableemailalerts

 Nuxeo Enterprise Platform 5.4 Documentation

72
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

Connect settings
From this step, you can subscribe to a free 30 days trial offer of Nuxeo Connect which gives you the possibility to evaluate and fully leverage the
Marketplace catalog and Nuxeo Studio, the online Nuxeo customization environment. If you subscribe to the trial offer of Nuxeo Connect, you will
be sent an email confirming your subscription and your credentials to Nuxeo Connect and giving you the links to access the Nuxeo Connect Portal
and .Nuxeo Studio

Summary
A final Summary step provides you with a screen on which you can see all the configuration parameters that you set in the previous steps so you
can review them and possibly go back to a step to change them.

If you already have a Nuxeo Connect account, you can register your Nuxeo instance from this step to directly be able to apply your
Nuxeo Studio customizations and the installation of Nuxeo Marketplace packages in your instance.

http://doc.nuxeo.com/x/GATF
https://doc.nuxeo.com/display/CONNECT/Nuxeo+Online+Services+Documentation
https://doc.nuxeo.com/display/Studio

 Nuxeo Enterprise Platform 5.4 Documentation

73
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

To validate your configuration, click on the button. The server will automatically restart and your configuration will be applied. OnceStart Nuxeo
the server is restarted, you are displayed the login page. Log in to your application the user name and the passworAdministrator Administrator
d.

Update the application's configuration using the Admin Center

The is the graphical interface that enables the application's administrators to edit the configuration of the application directly fromAdmin Center
the user interface, and prevents them from editing .xml and .conf files. They can edit the configuration of the application, monitor it, display
messages to the users, and easily customize the application thanks to the .Update Center

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

74
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

1.

2.
3.

4.

To edit the configuration of the application using the Admin Center:
Log in with an administrator account.
Default administrator credentials are:

login: Administrator
password: Administrator

Click on the link in the page header.Nuxeo Admin Center
Click on the tab, edit the configuration you want to change and Save.Setup

If indicated as needed on top of the page, restart the server.

Manual edition of Nuxeo configuration file nuxeo.conf

By default, the file is located in . If you installed your application using the Windows installer, the configurationnuxeo.conf $NUXEO_HOME/bin
is located in (check the for more information). If you plan to use the%APPDATA%\Nuxeo DM\conf corresponding Knowledge Base page
application in production, you should , to make upgrades easier and more secured:move the configuration file outside the Nuxeo home directory
your data and configuration won't risk to be overridden or lost.

You can report to the for the list of available paramaters.Configuration parameters index

Recommended configurations

Nuxeo applications come as ready-to-use applications, that you can quickly install and evaluate. However, if you plan to go in production, have
several Nuxeo applications on the same machine or do some performance tests, here are some changes of configuration that we recommend to
do, especially for advanced testing or before going into production:

Move configuration, data and log directories outside Nuxeo
Define environment variables

NUXEO_HOME
NUXEO_CONF

Windows specific case
Enable email alerts

The steps given below are given using the Admin Center. They can of course also be done by .editing the file manuallynuxeo.conf

You can also take a look at the following pages for recommendations and examples:

Recommended configurations,
Configuration examples.

You can report to the for more information about the available parameters.Configuration parameters index

For Windows users
Do not use Office writers, nor Notepad.
Wordpad is fine, Notepad++ and SciTE are good text editors, there are a lot of .other text editors

More configuration use cases on the page.Configuration examples

http://doc.nuxeo.com/x/GATF
https://doc.nuxeo.com/pages/createpage.action?spaceKey=NXDOC&title=Where+Are+the+Log+and+Configuration+Files+in+Windows%3F
https://doc.nuxeo.com/display/NXDOC54/Setup#Setup-manual-edit
http://en.wikipedia.org/wiki/List_of_text_editors

 Nuxeo Enterprise Platform 5.4 Documentation

75
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

1.
2.

1.
2.
3.

Move configuration, data and log directories outside Nuxeo

The configuration of your application is saved in the configuration file, whatever the . Itnuxeo.conf means you use to configure your application
is better, although not mandatory, to store your customized configuration outside Nuxeo. This way, you will be able to easily upgrade Nuxeo,
keeping your configuration safely apart of Nuxeo directory.

To move the configuration file outside the Nuxeo directory:
Move the nuxeo.conf file from its default location.
After you moved , you need to .nuxeo.conf define its location as an environment variable

By default, and directories are stored inside the Nuxeo tree. To ease backup and upgrades, it is highly recommended to move themdata log
outside the Nuxeo tree.

To move the data and log directories:
In the Admin Center, type the path to the location where you want the directories to be stored (see the table below).
Click on .Save
Restart your server.
The and directories are created at the location you typed.data log

Data and log directories configuration

Field / Property Description

Data directory
 nuxeo.data.dir

Data directory (absolute or relative to NUXEO_HOME). It involves all
data not being stored in the database.
Linux recommended path: /var/lib/nuxeo/...

Log directory
nuxeo.log.dir

Log directory (absolute or relative to NUXEO_HOME).
Linux recommended path: /var/log/nuxeo/...

Define environment variables

When the server starts, it guesses where the Nuxeo home directory and the Nuxeo configuration file () are located. If it doesn't find itnuxeo.conf
or if you want to force it to use a specific home directory and/or a specific configuration file, you can define their location as environment variables.

NUXEO_HOME

Here is how Nuxeo home is guessed when the server starts:

Before Nuxeo EP 5.4.1, if is not set, then the following environment variables are used to find the Nuxeo Home, by order:NUXEO_HOME
JBOSS_HOME, CATALINA_HOME, JETTY_HOME.
Since Nuxeo EP 5.4.1, if is not set, then the parent directory of the called script () is used.NUXEO_HOME nuxeoctl

Setting the Nuxeo home directory as an environment variable is recommended in the following cases:

if you installed several Nuxeo applications on the same machine (for evaluation or production purpose),
if you want to use other scripts than the script (such as a service in).$NUXEO_HOME/bin/nuxeoctl /ect/init.d

You must then set in the system environment variables:NUXEO_HOME=/path/to/nuxeo/
Windows users must write or use the control panel interface to define user environment parameters (like it's done for "set NUXEO_HOME=..."

).%PATH%
Linux and Mac OS X users will write ." in or ."export NUXEO_HOME=... ~/.bashrc ~/.profile

NUXEO_CONF

You need to set the location of the nuxeo.conf file as an environment variable if you moved your configuration outside of the Nuxeo directory.

Moving the data and configuration outside the Nuxeo directory is recommended in a production environment because it makes upgrades easier
and more secured: your data and configuration won't risk to be overridden or lost.
You must then set in the system environment variables.NUXEO_CONF=/path/to/nuxeo.conf

Windows specific case

Under Windows, the location of the is defined by that order of priority (ie first one of those found is used):nuxeo.conf

Registry key with PRODNAME equals "Nuxeo CAP", "Nuxeo DM",HKEY_LOCAL_MACHINE\SOFTWARE%PRODNAME%\ConfigFile
"Nuxeo DAM", ...
Environment variable NUXEO_CONF
"nuxeo.conf" file in the working directory

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

76
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

1.
2.

3.

"nuxeo.conf" file on the Desktop
"nuxeo.conf" file in the same location as .nuxeoctl.bat

Enable email alerts

Default Nuxeo DM email configuration is filled in with neutral values that you need to edit to make Nuxeo DM work with your mail server. Unless
you do that, alerts emails won't be sent to users. Unless you do that, alerts emails won't be sent to users.

To make alerts available:
In the Admin Center, click on the tab of system information section.Setup
Edit and fill in the values of the Email information section (see below for expected parameters).

Click the button .Save
As indicated on top of the page, you need to restart your server so the new configuration is taken into account.

Email information configuration

Field / Property Description

Email notifications subject prefix
nuxeo.notification.eMailSubjectPrefix

Text displayed in the "Object" before the object of the alerts email to
help users identify that the emails are coming from the application.
Default value is "[Nuxeo]". You can change is to whatever value you
like.

Mail store protocol
mail.store.protocol

Name of the protocol used to store emails on the server.
Default value is "pop3". You may need to change it to "IMAP".

Mail transport protocol
mail.transport.protocol

Name of the protocol used to send emails.
Default value is "smtp". This should work in most cases.

Host name for POP3
mail.pop3.host

Name of the mail server host used to receive and store emails.
Default value is "pop3.nosuchhost.nosuchdomain.com". You need to
change it.

Debug mode
mail.debug

Default value is set to "false". Change it to "true" if you want to have
the details of what the server is doing in the logs.

Host name for SMTP
mail.smtp.host

Mail server host name for outgoing mails.
Default value is "localhost". You need to change it so emails can be
sent from the server.

Port number for SMTP
mail.smtp.port

Mail server port for outgoing emails.
Default value is 25.

Use authentication for SMTP
mail.smtp.auth

Indicate if authentication is needed for the mail server to send emails.

Default value is "true". You should change it to "false" if no
authentication for sending email is required.

Use STARTTLS for SMTP
mail.smtp.usetls

Indicate if STARTTLS is needed for the mail server.
Default value is "false". You should change it to "true" if your SMTP
requires STARTTLS

SMTP username
mail.smtp.username

Type the username that will be used if you set the authentication for
SMTP parameter to "true".

SMTP password
mail.smtp.password

Type the password that will be used if you set the authentication for
SMTP parameter to "true".

Sender address mail
mail.from

Email address that will displayed as the sender's address.

Configuration parameters index

Here is a list of available parameters for nuxeo.conf. This list may not be exhaustive but it will be often updated.

Those parameters can be either environment parameters used by Nuxeo runtime or template parameters used for values replacement in

To enable alerts, filling in the SMTP parameters should be sufficient for most mail server configurations.

If you have complex mail server configurations, you may want to check the for more information.Javamail API FAQ

http://doc.nuxeo.com/x/GATF
http://www.oracle.com/technetwork/java/faq-135477.html

 Nuxeo Enterprise Platform 5.4 Documentation

77
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

configuration files.

Parameter Default value ("|" separates
possible values)

Description

JAVA_HOME None.
If undefined nuxeoctl script will
try to discover it.

Path to Java home directory.

JAVA_OPTS -Xms512m -Xmx1024m
-XX:MaxPermSize=512m
-Dsun.rmi.dgc.client.gcInterval=3
600000
-Dsun.rmi.dgc.server.gcInterval=
3600000
-Dfile.encoding=UTF-8

Optional values passed to the
JVM.
Nuxeo requires at least 1024 Mo
in JVM heap size and 256Mo as
maximum permanent size (512
recommended).
Decreasing garbage collector
frequency avoid having too much
CPU usage (Sun Java specific
options, recommended by
JBoss).

launcher.start.max.wait 300 Since 5.4.1. Maximum time to
wait for effective Nuxeo server
start before giving up (applies on
commands "start" and "restart").

launcher.override.java.tmpdir true Since 5.4.1. Possible values:
true or false
If true, will set java.io.tmpdi

 .r = nuxeo.tmp.dir

nuxeo.log.dir log Log directory (absolute or
relative to NUXEO_HOME).
Linux recommended path: /var
/log/nuxeo/...

nuxeo.pid.dir bin Directory where to store Nuxeo
PID file.

nuxeo.data.dir data Data directory (absolute or
relative to NUXEO_HOME). It
involves all data not being stored
in database.
Linux recommended path: /var
/lib/nuxeo/...

nuxeo.tmp.dir server/default/tmp (JBoss) | temp
(Tomcat) | tmp (Jetty)

Location of the temporary files.

nuxeo.force.generation true | once If "true", will force generation of
configuration files; otherwise
they are only generated when
not existing.
If "once", will force one time and
switch to false after successful
generation.
If "false", configuration changes
are ignored.

nuxeo.templates default Comma separated list of
templates to include.
Templates paths are absolute or
relative to
$NUXEO_HOME/templates/.
Available templates: postgresql,
mysql, mssql, oracle, custom, ...

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

78
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

nuxeo.bind.address 0.0.0.0 Server binding address. "0.0.0.0"
means "all available network
interfaces".
WARNING: when changing
"nuxeo.bind.address", you must
accordingly change
"nuxeo.loopback.url".

nuxeo.server.http.port 8080 Server HTTP listen port.

nuxeo.server.ajp.port 8009 Server AJP listen port.
This is not available on Jetty.

nuxeo.server.jvmRoute nuxeo Server AJP route for
load-balancing (since 5.4.2)

nuxeo.server.tomcat-admin.port 8005 Tomcat server's "admin" port.
This is only useful if you have
another tomcat server running
and want to avoid port conflicts.

nuxeo.server.https.port 8443 Server HTTPS listen port.
This is only useful if you have
modified the application server to
use HTTPS.

org.nuxeo.ecm.instance.name Nuxeo 5.4 Server name.

org.nuxeo.ecm.instance.descripti
on

Nuxeo ECM server Server description.

org.nuxeo.ecm.product.name Nuxeo DM

org.nuxeo.ecm.product.version 5.4.0-SNAPSHOT

org.nuxeo.ecm.webapp.dashboa
rd.mode

auto Defines the dashboard mode.
There are 3 modes:

auto: (default value) let
Nuxeo choose dashboard
based on user browser
capabilities.
old: force usage of the 'old'
JSF based dashboard for all
users.
opensocial: force usage of
the new OpenSocial based
dashboard for all users.

.targettemplateName server/default/deploy/nuxeo.ear Directory where fitemplateName
les will be deployed.

mailservice.user nobody (JBoss only) User for mail
authentication.

mailservice.password password (JBoss only) Password for mail
authentication.

mail.store.protocol
mail.transport.protocol

pop3
smtp

Server protocol parameters for
mailing.

mail.user nobody User who will receive mail
(unused in Nuxeo).

mail.pop3.host pop3.nosuchhost.nosuchdomain
.com

Mail server.

mail.debug false Enable debugging output from
the javamail classes.

nuxeo.notification.eMailSubjectP
refix

[Nuxeo] Subject prefix in Nuxeo
notification mails.

mail.smtp.host localhost SMTP gateway server.

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

79
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

mail.smtp.port 25 Mail server port.

mail.smtp.usetls false Use TLS for the SMTP
connection.

mail.smtp.auth true

mail.smtp.username anonymous

mail.smtp.password password

mail.from noreply@nuxeo.com The address mails will be sent
from.

nuxeo.db.name nuxeo | NUXEO Database name.

nuxeo.db.user sa | nuxeo Database username.

nuxeo.db.password (empty value) | password Database password.

nuxeo.db.host localhost Database host URL.

nuxeo.db.port 3306 | 1521 | 5432 Database host port.

nuxeo.db.min-pool-size 5 Database minimum pool size for
Nuxeo datasources.

nuxeo.db.max-pool-size 20 Database maximum pool size for
Nuxeo datasources.

nuxeo.vcs.min-pool-size 0 Database minimum pool size for
Nuxeo repository (VCS).

nuxeo.vcs.max-pool-size 20 Database maximum pool size for
Nuxeo repository (VCS).

nuxeo.url http://localhost:8080/nuxeo Application URL (without final
slash)

nuxeo.loopback.url http://localhost:8080/nuxeo Since 5.4.1. Nuxeo URL, for
connections from Nuxeo to itself
(theme banks default). The port
should be the same as
nuxeo.server.http.port

org.nuxeo.ecm.contextPath /nuxeo Application context path

org.nuxeo.ecm.platform.transfor
m.ooo.host.name

127.0.0.1 DEPRECATED.

org.nuxeo.ecm.platform.transfor
m.ooo.host.port

8100 DEPRECATED.

org.nuxeo.ecm.platform.transfor
m.ooo.version

2.2.1 DEPRECATED.

org.nuxeo.ecm.platform.transfor
m.ooo.enableDaemon

true DEPRECATED.

jod.connection.protocol SOCKET OpenOffice Connection protocol,
either PIPE or SOCKET.

jod.max.tasks.per.process 200 Maximum task per Office
instance before restarting it

jod.task.execution.timeout 120000 Will stop the task if it s not
completed after timeout.

jod.task.queue.timeout 30000 Will stop looking for the next task
in the queue after timeout.

jod.office.home Home directory of OpenOffice or
LibreOffice.

http://doc.nuxeo.com/x/GATF
http://localhost:8080/nuxeo
http://localhost:8080/nuxeo

 Nuxeo Enterprise Platform 5.4 Documentation

80
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

jod.jpipe.lib.path Path to Jpipe library. Only used
when connecting to OO through
PIPE.

jod.template.profile.dir Path to custom OO template
directory.

opensocial.gadgets.host localhost

opensocial.gadgets.port 8080

opensocial.proxy.proxySet false

opensocial.proxy.proxyHost

opensocial.proxy.proxyPort

opensocial.proxy.user

opensocial.proxy.password

repository.clustering.enabled false Activate clustering mode.

repository.clustering.delay 1000 When clustering is activated,
defines the delay during which
invalidations don't need to be
processed (expressed in
milliseconds).

repository.binary.store When clustering is activated,
defines the shared folder for the
binaries store.

nuxeo.templates.parsing.extensi
ons

xml,properties Files extensions being parsed for
parameters replacement when
copying templates.

org.nuxeo.ecm.jboss.configurati
on

default JBoss configuration to use
("default", "minimal", "all", ...)
Pay attention to the fact that this
won't apply to templates defining
their own " .target" valuetemplate
(for instance, "default" template
sets
"default.target=server/default/de
ploy" without being aware of
"org.nuxeo.ecm.jboss.configurati
on" value).

zip.entry.encoding ascii Choose how to encode filename
when exporting documents to zip
in the worklist.

org.nuxeo.ecm.platform.liveedit.
autoversioning

none,minor,major see Configuration Examples

nuxeo.wizard.done true or false depending on the
package

If set to false, will start a setup
wizard before starting Nuxeo.

nuxeo.http.proxy.host HTTP proxy host.

nuxeo.http.proxy.port HTTP proxy port.

nuxeo.http.proxy.login HTTP proxy login.

nuxeo.http.proxy.password HTTP proxy password.

http://doc.nuxeo.com/x/GATF
https://doc.nuxeo.com/pages/createpage.action?spaceKey=NXDOC&title=Configuration+Examples

 Nuxeo Enterprise Platform 5.4 Documentation

81
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

1.
2.

3.

1.
2.
3.
4.

facelets.REFRESH_PERIOD -1 Indicates to the compiler the
number of seconds to wait
between subsequent checks for
changes in modified JSF facelets
in a running application. Useful
for facelet debugging.
To disable this compiler check
use a value of -1 which is a
recommended value for
production deployments as
compiler checks have an impact
on application performance.

org.nuxeo.big.file.size.limit 5Mi (unset) Since 5.4.1, redirect onto the big
file download url if size exceed
limit

nuxeo.pageprovider.default-max
-page-size

100 Since 5.4.2-HF20, defines the
default maxPageSize to use in
pageProvider when no value is
defined in the pageProvider
contribution. Value '0' means no
limit.

Configuration examples

Here are some configuration usecases:
Change the Live Edit default version incrementation
Change the default port (8080)

The use of the Admin Center is highlighted in the steps below. However, you can do the same configurations by editing the filenuxeo.conf
.manually

Change the Live Edit default version incrementation

When users , the default behavior is that no version incrementation occurs. This default behavior can be changededit documents with Live Edit
and you can set what version number should be incremented when users save a document with Live Edit.

In the Admin Center, click on the tab of system information section.Setup
In the Advanced Settings, edit the value of the parameter "org.nuxeo.ecm.platform.liveedit.autoversioning" :

minor will instruct the server to automatically increment the minor version of the document,
major will instruct the server to automatically increment the major version of the document,
none will instruct the server to not increment the version of the document (this is the default value).

Click the button .Save

Change the default port (8080)

Nuxeo applications run on the 8080 port by default. As it may be used by another application (for instance another Nuxeo application if you want
to run Nuxeo DM and Nuxeo DAM at the same time), you may need to change it.

In the Admin Center, click on the tab of system information section.Setup
In the Advanced Settings, edit the value of the parameter "nuxeo.server.http.port".
Click the button .Save
Restart the server as indicated on top of the page.

Configuration templates

Nuxeo applications integrate a configuration templates system to ease configuration and maintenance of configuration files.
Nuxeo comes with default templates which mainly provide database configurations, but the templates can be used for any configuration purpose.

Properly using that template system ensures your customization of Nuxeo exclusively resides in your nuxeo.conf, custom templates and plugin
modules.
For instance, users can create templates for development, pre-production, and production environments; each template will include a different set
of xml contributions (users, ldap integration, database used, ...).

Templates are located in the "templates" directory (). To enable a configuration, such as database configuration, you$NUXEO_HOME/templates
just need to indicate which template to use in the Admin Center's Setup tab or in the nuxeo.conf configuration file.

Here are the templates provided by default:

common: common template used by other templates;

http://doc.nuxeo.com/x/GATF
https://doc.nuxeo.com/pages/createpage.action?spaceKey=NXDOC&title=Setup
https://doc.nuxeo.com/pages/createpage.action?spaceKey=NXDOC&title=Setup
https://doc.nuxeo.com/pages/createpage.action?spaceKey=USERDOC&title=Working+with+Live+Edit

 Nuxeo Enterprise Platform 5.4 Documentation

82
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

1.

2.

common-binding: (JBoss only), template used by other templates;
common-deploydir: (JBoss only), template used by other templates;
default: default Nuxeo configuration template for test purpose;
https: (Tomcat only), not recommended template for making the server listen to port 443 (HTTPS);
monitor: (JBoss only), activate the JBoss LogginMonitor service to log miscellaneous MBean informations;
postgresql: PostgreSQL configuration template;
postgresql-quartz-cluster
mssql: MS SQL Server configuration template;
mssql-quartz-cluster
mysql: MySQL configuration template;
oracle: Oracle configuration template;
oracle-quartz-cluster
custom: sample custom templates. Of course, this template is empty by default. One should copy it outside and adapt to$NUXEO_HOME
his needs.

Want to know more?

See the database templates details
See how to add custom templates

Database
Nuxeo applications store most of their data in a SQL database. Several databases are supported, but they must be configured to work correctly.

This takes two steps:

Configure the database:
PostgreSQL (8.3, 8.4 and 9.0),
Oracle (10g R2 (10.2.0.5) and 11g),
MS SQL Server (2005).

Connect Nuxeo to the database.

Configuring PostgreSQL

Nuxeo supports PostgreSQL 8.3, 8.4 and 9.0. We always recommend that you use the latest stable version, which is PostgreSQL 9.0 at the time
of this writing.

The database needs to be configured to work properly with Nuxeo. Some settings be changed in order for Nuxeo to work. Other settings must sh
 be changed in order for Nuxeo to have good performance.ould

This FAQ will give you some hints to configure your database, but please refer to your DBA or the PostgreSQL documentation for more
information ().http://wiki.postgresql.org/wiki/Tuning_Your_PostgreSQL_Server

Most settings have to be changed in the file. Some SQL commands may have to be executed directly at the PostgreSQLpostgresql.conf
console ().psql

Mandatory changes

Two-phase commit

Nuxeo uses two-phase commit and needs to have the settings updated.max_prepared_transactions

max_prepared_transactions = 64

Implicit casts

Jena (used for relations and comments) and jBPM (used for workflows) assume some implicit value casting in the SQL they generate. However
since PostgreSQL 8.3 the database is much stricter than PostgreSQL 8.2 with respect to value casting.

To make Nuxeo work with PostgreSQL >= 8.3, you must therefore execute the following commands in your PostgreSQL console when connected

For production environment, it is recommended to define your own custom template outside , as for nuxeo.conf.$NUXEO_HOME
It must then be referenced in nuxeo.conf with its absolute path.

This change is mandatory for PostgreSQL >= 8.4 since prepared transactions are disabled by default. If you don't change this option
you will have exceptions.javax.transaction.HeuristicMixedException

http://doc.nuxeo.com/x/GATF
https://doc.nuxeo.com/display/NXDOC/Connecting+Nuxeo+to+the+Database#ConnectingNuxeototheDatabase-default
https://doc.nuxeo.com/display/NXDOC/HTTP+and+HTTPS+Reverse-Proxy+Configuration#HTTPandHTTPSReverse-ProxyConfiguration-template
https://doc.nuxeo.com/display/NXDOC/Connecting+Nuxeo+to+the+Database#ConnectingNuxeototheDatabase-postgresql%28recommended%29
https://doc.nuxeo.com/display/NXDOC/Connecting+Nuxeo+to+the+Database#ConnectingNuxeototheDatabase-mssql
https://doc.nuxeo.com/display/NXDOC/Connecting+Nuxeo+to+the+Database#ConnectingNuxeototheDatabase-mysql
https://doc.nuxeo.com/display/NXDOC/Connecting+Nuxeo+to+the+Database#ConnectingNuxeototheDatabase-oracle
https://doc.nuxeo.com/pages/createpage.action?spaceKey=NXDOC&title=Adding+Custom+Templates
https://doc.nuxeo.com/display/NXDOC54/Connecting+Nuxeo+to+the+database#ConnectingNuxeotothedatabase-Databasetemplates
http://wiki.postgresql.org/wiki/Tuning_Your_PostgreSQL_Server

 Nuxeo Enterprise Platform 5.4 Documentation

83
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

to the database, so that any database created afterward will come with the required CASTs (if your database is already created,template1
execute the commands in your database as well):

CREATE FUNCTION pg_catalog.text(integer) RETURNS text STRICT IMMUTABLE LANGUAGE SQL AS
'SELECT textin(int4out($1));';
CREATE CAST (integer AS text) WITH FUNCTION pg_catalog.text(integer) AS IMPLICIT;
COMMENT ON FUNCTION pg_catalog.text(integer) IS 'convert integer to text';

CREATE FUNCTION pg_catalog.text(bigint) RETURNS text STRICT IMMUTABLE LANGUAGE SQL AS
'SELECT textin(int8out($1));';
CREATE CAST (bigint AS text) WITH FUNCTION pg_catalog.text(bigint) AS IMPLICIT;
COMMENT ON FUNCTION pg_catalog.text(bigint) IS 'convert bigint to text';

Possible errors if you don't update the casts as described above are:

org.postgresql.util.PSQLException: ERROR: operator does not exist: integer = character
varying

org.postgresql.util.PSQLException: ERROR: operator does not exist: bigint = character
varying

com.hp.hpl.jena.db.RDFRDBException: Exception while checking db format -
com.hp.hpl.jena.db.RDFRDBException: Internal SQL error in driver -
org.postgresql.util.PSQLException: ERROR: current transaction is aborted, commands
ignored until end of transaction block

com.hp.hpl.jena.db.RDFRDBException: Internal SQL error in driver -
org.postgresql.util.PSQLException: ERROR: current transaction is aborted, commands
ignored until end of transaction block

For further details, please see . You might also be interested in .this url this migration helper

Language plpgsql

If not already done, if you have PostgreSQL < 9.0 you must enable the language:plpgsql

CREATE LANGUAGE 'plpgsql';

Execute this on the database, so that any database created afterward will get the required language. If your database is alreadytemplate1
created, execute the command in your database as well.

If you get the following error then it just means that the language is already created (which is the case since PostgreSQL 9.0) and there is nothing
further to do:

ERROR: language "plpgsql" already exists

Create the role and database for Nuxeo

This change is mandatory for PostgreSQL >= 8.3 since casts have been simplified. If you don't change this option you will have operat
 exceptions.or does not exist

http://doc.nuxeo.com/x/GATF
http://petereisentraut.blogspot.com/2008/03/readding-implicit-casts-in-postgresql.html
http://okbob.blogspot.com/2009/02/83-migration-helper.html

 Nuxeo Enterprise Platform 5.4 Documentation

84
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

For instance (please change the password and the file of your instance accordingly):nuxeo.conf

$ createuser -U postgres -W -P nuxeo
$ createdb -U postgres -W -O nuxeo -E UTF8 nuxeo

Or from the psql command prompt:

CREATE ROLE nuxeo WITH PASSWORD 'nuxeo' LOGIN;
CREATE DATABASE nuxeo ENCODING 'UTF8' OWNER nuxeo;

Specific configuration

Accent-insensitive fulltext search

If you want accent-insensitive fulltext search, you'll need to install the contribution, create a new text search configuration, and specifyunaccent
its use in Nuxeo.

Unaccent is described here .http://www.postgresql.org/docs/9.0/static/unaccent.html

Install it by running script. For Ubuntu users, this file is located at unaccent.sql /usr/share/postgresql/9.0/contrib/unaccent.sql

Connect to your database and run the following instructions:

CREATE TEXT SEARCH CONFIGURATION fr (COPY = french);
ALTER TEXT SEARCH CONFIGURATION fr ALTER MAPPING FOR asciihword, asciiword,
hword_asciipart, hword, hword_part, word WITH unaccent, french_stem;

Then replace in your file the analyzer by the one you just defined (in this example).default-repository-config.xml french fr

Performance tuning

Shared buffers and system cache

One of the most important thing for PostgreSQL is to have lots of shared buffers along with free memory that can be used by the system cache.

If you plan to use 1 GB of shared buffers, update the following property in your file:postgresql.conf

shared_buffers = 1GB

The shared memory is dedicated to PostgreSQL and must be available on the system side using sysctl. You need to enable a little bit more at the
OS level, for instance try 1 GB + 128 MB:

sysctl kernel.shmmax=1207959552

Then restart the PostgreSQL.
If there is no enough shared memory you will have an explicit error message and you should try with a bigger kernel.shmmax value.

Note that using the encoding for your database is important.UTF8

http://doc.nuxeo.com/x/GATF
http://www.postgresql.org/docs/9.0/static/unaccent.html

 Nuxeo Enterprise Platform 5.4 Documentation

85
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

Once PostgreSQL is started the retained shmmax value, should be registered in the file by adding the following line./etc/sysctl.conf

kernel.shmmax = <SHMMAX_VALUE>

PostgreSQL needs to know how much memory the system will use for disk caching. This is used as a hint when executing queries, this memory is
not allocated by PostgreSQL.

To set value, you need to run your application once and check how much memory is used by system cache. This caneffective_cache_size
be done using the free command and by summing buffers and cached values. The value is plus the amount of OS cache.shared_buffers

effective_cache_size = 2GB

Memory for workers

Increasing the parameter allows PostgreSQL to do larger in-memory sorts which is much faster than disk sorts. Have in mind that work_mem wor
 size will be taken by each connection (a pool of 20 connections will take 20 * work_mem).k_mem

work_mem = 32MB

Increasing the will speed up the vacuum procedure.maintenance_work_mem

maintenance_work_mem = 128MB

Buffering writes

The default can be increase to improve write access time:wal_buffers

wal_buffers = 8MB

Mass import specific tuning

When doing mass import you can disable the fulltext trigger and fulltext index. They must be dropped after a successful login on a running Nuxeo
DM because DDL SQL commands are executed on the first access.

ALTER TABLE fulltext DISABLE TRIGGER nx_trig_ft_update;
DROP INDEX IF EXISTS fulltext_fulltext_idx;

After the import you can update the fulltext column like this:

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

86
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

ALTER TABLE fulltext ENABLE TRIGGER nx_trig_ft_update;
-- Let the trigger update the fulltext column
UPDATE fulltext SET fulltext = ''::TSVECTOR WHERE length(fulltext) is NULL;
CREATE INDEX fulltext_fulltext_idx ON fulltext USING gin (fulltext);

Changing temporary the PostgreSQL configuration during the import provide performance benefits:

checkpoint_segments = 16
full_page_writes = off
fsync = off
synchronous_commit = off

Please refer to the .PostgreSQL reference manual

Index vs table scan

The parameter influences this query planner's choice. The default value 4 is too high and can result in a wrong bet on largerandom_page_cost
table. You can lower the cost to 2.

random_page_cost = 2

Updating the planner statistics

PostgreSQL computes statistics on table content in order to plan for the best performance when executing queries with joins and complex filters.
The default configuration in PostgreSQL <= 8.3 is set to the value 10 which can lead to not accurate enoughdefault_statistics_target
estimates. In 8.4 this value is now set to 100 by default. To set it to 100 in 8.3 instances, just use:

SET default_statistics_target = 100;

On a running instance you can check that settings with:

SHOW default_statistics_target;

And then re-execute to update the statistics.ANALYZE

Vacuuming

The autovacuum is enabled by default since PostgreSQL 8.3.

Exceptionally, a full vacuum can be done at downtime to recover disk space, it should be followed with a command.reindexdb

Monitoring

You can monitor the slowest request with the following configuration:

http://doc.nuxeo.com/x/GATF
http://www.postgresql.org/docs/8.3/interactive/runtime-config-wal.html

 Nuxeo Enterprise Platform 5.4 Documentation

87
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

log_line_prefix = '%t [%p]: [%l-1] user=%u,db=%d '
log_min_duration_statement = 400

See the PostgreSQL section of the page.Monitoring and Maintenance

Reporting problems

If you have a database configuration problem and you want to fill a JIRA ticket, there are some information to report:

The PostgreSQL server state: is it dedicated or shared, which OS, how many CPU, RAM, is it a virtual machine...

How much memory is available on the database server (output).free -m

Amount of Nuxeo documents and PostgreSQL configuration. Using the "psql" command line tool (andconnect to your Nuxeo database
not the default database named postgres) and execute the following commands:

http://doc.nuxeo.com/x/GATF
https://doc.nuxeo.com/display/NXDOC/Monitoring+and+Maintenance

 Nuxeo Enterprise Platform 5.4 Documentation

88
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

\o /tmp/pgconf.txt
\timing
SELECT now(), Version();
SELECT current_database() AS db_name,
pg_size_pretty(pg_database_size(current_database())) AS db_size,
pg_size_pretty(SUM(pg_relation_size(indexrelid))::int8) AS index_size FROM pg_index;
SELECT COUNT(*) AS documents_count FROM hierarchy WHERE NOT isproperty;
SELECT primarytype, COUNT(*) AS count FROM hierarchy WHERE NOT isproperty GROUP BY
primarytype ORDER BY count DESC;
SELECT COUNT(*) AS hierarchy_count FROM hierarchy;
SELECT COUNT(*) AS aces_count FROM acls;
SELECT COUNT(DISTINCT(id)) AS acls_count FROM acls;
SELECT COUNT(*) AS read_acls_count FROM read_acls;
SELECT (SELECT COUNT(*) FROM users) AS users, (SELECT COUNT(*) FROM user2group) AS
user2groups,
 (SELECT COUNT(*) FROM groups) AS group, (SELECT COUNT(*) FROM group2group) AS
group2group;
SELECT stat.relname AS "Table",
 pg_size_pretty(pg_total_relation_size(stat.relid)) AS "Total size",
 pg_size_pretty(pg_relation_size(stat.relid)) AS "Table size",
 CASE WHEN cl.reltoastrelid = 0 THEN 'None' ELSE
 pg_size_pretty(pg_relation_size(cl.reltoastrelid)+
 COALESCE((SELECT SUM(pg_relation_size(indexrelid)) FROM pg_index WHERE
indrelid=cl.reltoastrelid)::int8, 0)) END AS "TOAST table size",
 pg_size_pretty(COALESCE((SELECT SUM(pg_relation_size(indexrelid)) FROM pg_index
WHERE indrelid=stat.relid)::int8, 0)) AS "Index size",
 CASE WHEN pg_relation_size(stat.relid) = 0 THEN 0.0 ELSE
 round(100 * COALESCE((SELECT SUM(pg_relation_size(indexrelid)) FROM pg_index WHERE
indrelid=stat.relid)::int8, 0) / pg_relation_size(stat.relid)) / 100 END AS "Index
ratio"
FROM pg_stat_all_tables stat
 JOIN pg_statio_all_tables statio ON stat.relid = statio.relid
 JOIN pg_class cl ON cl.oid=stat.relid AND stat.schemaname='public'
ORDER BY pg_total_relation_size(stat.relid) DESC
LIMIT 20;
SELECT nspname,relname,
 round(100 * pg_relation_size(indexrelid) / pg_relation_size(indrelid)) / 100 AS
index_ratio, pg_size_pretty(pg_relation_size(indexrelid)) AS index_size,
pg_size_pretty(pg_relation_size(indrelid)) AS table_size
FROM pg_index I
LEFT JOIN pg_class C ON (C.oid = I.indexrelid)
LEFT JOIN pg_namespace N ON (N.oid = C.relnamespace)
WHERE
 nspname NOT IN ('pg_catalog', 'information_schema', 'pg_toast') AND C.relkind='i'
AND pg_relation_size(indrelid) > 0
ORDER BY pg_relation_size(indexrelid) DESC LIMIT 15;
SELECT relname, idx_tup_fetch + seq_tup_read AS total_reads
FROM pg_stat_all_tables WHERE idx_tup_fetch + seq_tup_read != 0
ORDER BY total_reads desc LIMIT 15;
\di+
SELECT sum(generate_series) AS "speedTest" FROM generate_series(1,1000000);
EXPLAIN ANALYZE SELECT sum(generate_series) AS "speedTest" FROM
generate_series(1,1000000);
SELECT name, unit, current_setting(name), source FROM pg_settings WHERE
source!='default';
SHOW ALL;
\q

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

89
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

 and attach the output file located in into the JIRA ticket./tmp/pgconf.txt

If you are monitoring the slowest queries (See monitoring section) you can zip and attach the log file to the JIRA ticket.\opostgresql
/tmp/pgconf.txt

Configuring Oracle

Nuxeo supports Oracle 10g R2 (10.2.0.5) and Oracle 11g.

Oracle Text (fulltext)

Oracle Text needs to be enabled in your database for fulltext indexing, please consult your Oracle documentation.

If you fail to install Oracle Text, you will get on startup the following error:

java.sql.SQLException: ORA-29833: indextype does not exist

In addition, if you want to configure specific lexers or word lists then check http://download.oracle.com/docs/cd/B19306_01/text.102/b14218/cdata
 for configuration parameters and syntax. Lexers and word lists are used by Nuxeo when configured in its dic.htm default-repository-confi
 file.g.xml

Grant on DBMS_CRYPTO

Since Nuxeo EP 5.3.2, you need to grant execution to your database user:DBMS_CRYPTO

GRANT EXECUTE ON SYS.DBMS_CRYPTO TO nuxeo;

This is due to optimizations now enabled on Oracle that need hashing functions (MD5), available in this package.

Possible errors if you don't do this grant are:

java.sql.SQLException: ORA-06550: line 1, column 7: PLS-00905: object
NUXEO.NX_REBUILD_READ_ACLS is invalid

Grant on V$SESSION

If you use Nuxeo Clustering (), then you must make sure that your database user has access to <clustering enabled="true"/> V$SESSIO
:N

GRANT SELECT ON SYS.V_$SESSION TO nuxeo;

You can check that this works as intended by doing, as the database user:

SELECT SID FROM V$SESSION WHERE SID = SYS_CONTEXT('USERENV', 'SID');

Other grants

The following more standard grants must also be executed :

http://doc.nuxeo.com/x/GATF
http://download.oracle.com/docs/cd/B19306_01/text.102/b14218/cdatadic.htm
http://download.oracle.com/docs/cd/B19306_01/text.102/b14218/cdatadic.htm

 Nuxeo Enterprise Platform 5.4 Documentation

90
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

GRANT CONNECT TO nuxeo;
GRANT RESOURCE TO nuxeo;

The following is sometimes needed, if you have several schemas:

GRANT SELECT ANY TABLE TO nuxeo;

Character set

Your database must be configured with set to . If your database character set is not , you mayNLS_CHARACTERSET AL32UTF8 AL32UTF8
observe incorrect behavior including:

incorrect storage of accented or special characters,
no tree structure visible on the left of Nuxeo DM,
queries returning no document.

To check the character set on your server, execute:

SELECT value FROM NLS_DATABASE_PARAMETERS WHERE parameter = 'NLS_CHARACTERSET';

If you need to change the character set of you database, please check http://download.oracle.com/docs/cd/B19306_01/server.102/b14225/ch11c
.harsetmig.htm

If for some reason you must use an unsupported character set that is not in the list: , , , , , AL32UTF8 UTF8 US7ASCII WE8DEC WE8ISO8859P1 WE8
, then you will need an additional JAR in your Java class path. Download at MSWIN1252 orai18n.jar orai18n.jar http://www.oracle.com/tec

.hnology/software/tech/java/sqlj_jdbc/htdocs/jdbc_10201.html
Then add it in the class path for your Nuxeo server. For instance, in JBoss, you just put the jar in . (The file $JBOSS/server/default/lib ora

 replaces the files in the Oracle 9i and older releases.)i18n.jar nls_charset*.*

Configuring MS SQL Server

Nuxeo supports Microsoft SQL Server 2005 or 2008.

Database collation

To work properly Nuxeo need to have some column with a case sensitive collation.

You need have case sensitive collation (a name with " " inside), if this is not the case for your existing database you can change it like this:CS

ALTER DATABASE nuxeo COLLATE French_CS_AS

Row Versioning-Based Transaction Isolation

Technical explanation
Internally, for security checks, Nuxeo executes SQL statements that need to be passed ARRAY objects (for the list of principals and
permissions), but if the correct character set is not installed then the Oracle JDBC driver behaves incorrectly and Oracle actually
receives empty strings. This in turn results in empty results for the queries as none of the documents will match due to incorrect security
checks. The orai18n.jar fixes this.

Note that currently SQL Server 2008 may crash when working with fulltext queries, see for details. (This is a bug due toNXP-6143
Microsoft, not Nuxeo.)

http://doc.nuxeo.com/x/GATF
http://download.oracle.com/docs/cd/B19306_01/server.102/b14225/ch11charsetmig.htm
http://download.oracle.com/docs/cd/B19306_01/server.102/b14225/ch11charsetmig.htm
http://www.oracle.com/technology/software/tech/java/sqlj_jdbc/htdocs/jdbc_10201.html
http://www.oracle.com/technology/software/tech/java/sqlj_jdbc/htdocs/jdbc_10201.html
https://jira.nuxeo.com/browse/NXP-6143

 Nuxeo Enterprise Platform 5.4 Documentation

91
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

To prevent locking and deadlocking problems you need to , this can be done with the followingenable the row versioning-based isolation levels
SQL commands:

ALTER DATABASE nuxeo SET ALLOW_SNAPSHOT_ISOLATION ON;
ALTER DATABASE nuxeo SET READ_COMMITTED_SNAPSHOT ON;

Note that there must be no other open connection in the database until ALTER DATABASE is complete.

If you don't do this you will get the following error at startup:

Snapshot isolation transaction failed accessing database 'nuxeo' because snapshot
isolation is not allowed in this database. Use ALTER DATABASE to allow snapshot
isolation.

Fulltext

If you configure a fulltext index in Nuxeo (which is the default), you will need to make sure that your SQL Server instance has Full-Text Search
configured (it's an optional component during installation). See for details.http://msdn.microsoft.com/en-us/library/ms142571.aspx

Failing to do this will provoke errors like:

Cannot use a CONTAINS or FREETEXT predicate on table or indexed view 'fulltext'
because it is not full-text indexed.

Full-Text Search is not enabled for the current database. Use sp_fulltext_database to
enable full-text search for the database. The functionality to disable and enable
full-text search for a database is deprecated. Please change your application.

The French version of these messages, for reference:

Impossible d'utiliser le prédicat CONTAINS ou FREETEXT sur table ou vue indexée
'fulltext', car il n'y a pas d'index de texte intégral.

SQL Server Msg 7601

SQL Server Msg 7616

SQL Server Msg 7601

http://doc.nuxeo.com/x/GATF
http://technet.microsoft.com/en-us/library/ms175095.aspx
http://msdn.microsoft.com/en-us/library/ms142571.aspx

 Nuxeo Enterprise Platform 5.4 Documentation

92
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

La recherche en texte intégral n'est pas activée dans la base de données en cours.
Utilisez sp_fulltext_database pour l'activer sur cette base de données. La
fonctionnalité de désactivation et d'activation d'une recherche en texte intégral pour
une base de données est désapprouvée. Modifiez votre application.

Fulltext catalog

Nuxeo uses a fulltext catalog named by default, this can be changed in the Nuxeo configuration files (see).nuxeo configuration details

Additional maintenance operation

Since 5.4.2 HF05 the SQL Server backend comes with ACL (Access Control List) optimization. This optimization works with cache tables to store
rights for each users and keep tracking of documents and rights changes. Theses data are reset when the server is started.

For long running instance or if you want to perform a hot backup without these unnecessary data, you can invoke the following stored procedure:

USE nuxeo;
EXEC dbo.nx_vacuum_read_acls;

Or you can exclude the following tables from your backup:

- aclr

- aclr_modified

- aclr_permissions

- aclr_user_map

- aclr_user

Connecting Nuxeo to the database

To connect Nuxeo to your database, you need to tell Nuxeo which database template to use and provide the database connection information.

On this page:
Connecting Nuxeo to the database from the Admin Center
Connecting Nuxeo to the database from the Startup wizard
Connecting Nuxeo to the database from the nuxeo.conf file
Database templates

default
postgresql (recommended)
oracle
mssql
mysql

Connecting Nuxeo to the database from the Admin Center

SQL Server Msg 7616

http://doc.nuxeo.com/x/GATF
https://doc.nuxeo.com/display/KB/Configure+Nuxeo+5.3+with+VCS+and+SQL+Server

 Nuxeo Enterprise Platform 5.4 Documentation

93
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

1.
2.

3.
4.
5.

In the Admin Center, click on the tab of system information section.Setup
In the section, select the target database in the drop down menu.Main information
A new section is displayed on the page.Database Information

Fill in the database connection information.
Click on the button.Save
Restart your server.

Connecting Nuxeo to the database from the Startup wizard

The first time you start your Nuxeo server, a wizard is displayed to help you setup your application. Step 3 is about the database: select the
database you want to use in the drop down list and provide the connection information to the database.

Connecting Nuxeo to the database from the nuxeo.conf file

By default, the "default" template is enabled on your Nuxeo server (see the section for more information on this template).#Database templates
You need to edit it to change the template to be used.

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

94
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

1.

2.

3.

4.
5.

1.
2.

Open your nuxeo.conf file with a text editor.

If needed, uncomment or edit the parameter and replace with the wanted databasenuxeo.templates default
template's name.
Uncomment or edit the parameters below and provide their values:

nuxeo.db.name
nuxeo.db.user
nuxeo.db.password
nuxeo.db.host
nuxeo.db.port

Save your modifications.
Restart the server.

Database templates

The default available database templates are:

#default
#postgresql (recommended)
#oracle
#mssql
#mysql

default

This is the default Nuxeo configuration. It is designed for development or test purpose.

Repository backend: H2
Services backend: Derby

postgresql (recommended)

This is the recommended configuration for production, based on PostgreSQL.

Repository backend: PostgreSQL XA
Services backend: PostgreSQL XA

The PostgreSQL driver is included in the Nuxeo applications by default. However, if needed you can download it from http://jdbc.postgresql.org/do
.wnload.html#current

The JAR (for instance) is located in or .postgresql-9.0-801.jdbc4.jar $JBOSS/server/default/lib/ $TOMCAT/lib/

See the page for more information on the database configuration.Configuring PostgreSQL

oracle

Repository backend: Oracle XA
Services backend: Oracle

The driver is not included in Nuxeo applications. To install it:

Download the appropriate JDBC driver from: .http://www.oracle.com/technetwork/database/features/jdbc/index-091264.html
The JAR must be placed in or .$JBOSS/server/default/lib/ $TOMCAT/lib/

For Windows users
Do not use Office writers, nor Notepad.
Wordpad is fine, Notepad++ and SciTE are good text editors, there are a lot of .other text editors

For production or load testing environments
These are the minimum required parameters to enable the Nuxeo server to communicate with the
database. For a production or load testing environment, you may need to provide the other commented
parameters.

You can use a later driver with an earlier database version, for instance the 9.0 driver still works with PostgreSQL 8.3 or 8.4.

Nuxeo applications have been tested with the JDBC drivers available at http://www.oracle.com/technology/software/tech/java/sqlj_jdbc/
.htdocs/jdbc_10201.html

http://doc.nuxeo.com/x/GATF
http://jdbc.postgresql.org/download.html#current
http://jdbc.postgresql.org/download.html#current
http://www.oracle.com/technetwork/database/features/jdbc/index-091264.html
http://en.wikipedia.org/wiki/List_of_text_editors
http://www.oracle.com/technology/software/tech/java/sqlj_jdbc/htdocs/jdbc_10201.html
http://www.oracle.com/technology/software/tech/java/sqlj_jdbc/htdocs/jdbc_10201.html

 Nuxeo Enterprise Platform 5.4 Documentation

95
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

See the page for more information on the database configuration.Configuring Oracle

mssql

Repository backend: Ms SQL Server XA
Services backend: Ms SQL Server XA

The Open Source JTDS driver must be used (the official Microsoft JDBC driver has problems).
You can download it from: .http://repo2.maven.org/maven2/net/sourceforge/jtds/jtds/1.2.2/jtds-1.2.2.jar

This JAR must then be placed in or .$JBOSS/server/default/lib/ $TOMCAT/lib/

See the page for more information on the database configuration.Configuring MS SQL Server

mysql

We generally don't recommend to use MySQL (see).Why avoid MySQL?

Repository backend: MySQL XA
Services backend: MySQL

The JDBC driver (dowloadable from) is included in Nuxeo applications and is located in http://www.mysql.com/downloads/connector/j/ $JBOSS/s
 or .erver/default/lib/ $TOMCAT/lib/

Authentication, users and groups

Authentication and Nuxeo EP

Nuxeo EP authentication infrastructure is based on the JAAS standard and has be designed as pluggable as possible so that you can choose you
you retrieve user information (identification) and how you validate (authentication).

You can see below a schema showing how the global auth process works:

The blue blocks represents the pluggability points:

retrieving user related information (getting login/password, getting a SSO ticket ...),
validating user credentials against a backend (SQL DB, LDAP directory, external application ...).

You can see below the flow chart for an authentication.

http://doc.nuxeo.com/x/GATF
http://repo2.maven.org/maven2/net/sourceforge/jtds/jtds/1.2.2/jtds-1.2.2.jar
https://doc.nuxeo.com/pages/createpage.action?spaceKey=KB&title=MySQL+limitations
http://www.mysql.com/downloads/connector/j/

 Nuxeo Enterprise Platform 5.4 Documentation

96
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

Built-in Login Plugins

Login plugins are responsible for retrieving the user informations.

It's usually a negotiation between the Nuxeo server and the client browser, but a SSO server may also be part of the process.

By default Nuxeo includes 3 Login Plugins:

HTTP Basic authentication,
Form based authentication,
Anonymous authentication.

Additional Login plugins are availables as addons.

When needed, the security filter will determine the right login plugin to use according to:

what the client browser can provide,
the server configuration (that can be server wide or specific for some urls).

Built-in PluginsLoginModule

Nuxeo EP uses extension points to define plugins in order to avoid having to define several .LoginModule LoginModules

By default there are two implementations of the plugins:LoginModule

one that checks Login/Password against the declared directories (SQL oer LDAP),
one that does not check the password and only checks that user exists and fetch user properties
(this one is useful when Nuxeo is behind a portal or a SSO server and Nuxeo can not check any password).

OAuth support

Since version 5.4.1, Nuxeo EP provides a built-in support for .OAuth
Please see the dedicated for more info.OAuth Page

Available authentication modules

nuxeo-platform-login-cas2

The (CAS) is a protocol for the . Its purpose is to permit a user to access multiple applicationsCentral Authentication Service single sign-on web
while providing their credentials (such as user ID and password) only once. It also allows web applications to authenticate users without gaining
access to a user's security credentials, such as a password. The name also refers to a software package that implements this protocol.CAS
(extracted from wikipedia)

The defines an authentication plugin to validate the identity using the CAS server.nuxeo-platform-login-cas2
For further information, see .Using CAS2 authentication

nuxeo-platform-login-mod_sso

This plugin is used when Nuxeo is behind a reverse proxy that manage the authentication and simply transmit user information as a set of HTTP
headers to Nuxeo.

http://doc.nuxeo.com/x/GATF
http://oauth.net/
http://en.wikipedia.org/wiki/Central_Authentication_Service
http://en.wikipedia.org/wiki/Single_sign-on
http://en.wikipedia.org/wiki/World_Wide_Web

 Nuxeo Enterprise Platform 5.4 Documentation

97
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

This is typically the case when:

Client Certificate authentication is used (Apache does the certificate validation and only transmit to Nuxeo a DN),
a custom proxy-SSO is used.

nuxeo-platform-login-ntlm

This plugin allows NTLM V1 challenge/response over HTTP.

This plugin does not support NTLM V2 over HTTP and for recent MS Windows auth integration, you should probably use a CAS server with
Kerberos.

nuxeo-platform-login-portal-sso

This plugin is used when Nuxeo EP is accessed via an external app (like a portal) that wants to access Nuxeo data in the name of a given user.

Because in most cases the external app does not know the password of the user, this plugin allow to define a shared secret between the app and
Nuxeo EP so that the app can access Nuxeo as if it was a given user.

nuxeo-platform-login-shibboleth

The Shibboleth® System is a standards based, open source software package for web single sign-on across or within organizational boundaries.
It allows sites to make informed authorization decisions for individual access of protected online resources in a privacy-preserving manner.

The bundle defines:nuxeo-platform-login-shibboleth

an authentication plugin to map the user metadata from HTTP headers,
a NuxeoExceptionHandler to force the login of an anonymous user trying to access a restricted resource,
ShibbGroups, virtual groups based on Shibboleth attributes manageable from the UI,
a hierarchical group suggestion widget for the access rights management tab.

For further information, see .Using Shibboleth

Using a LDAP directory

Principles

In Nuxeo, users and groups are managed by . If you want your Nuxeo instance to use a LDAP directory you will need to:directories

configure a user directory pointing to your LDAP server(s),
configure a group directory pointing to your LDAP server(s) (if you need LDAP groups).

Of course you can have a specific custom config where:

you use a custom user / group schema,
you use several LDAP directories, or a mix of SQL and LDAP directories.

But for the most common use case, all you want to do is map the default to your LDAP Server. Since groups are used in NuxeouserDirectory
to associate permissions with content, fetching groups from LDAP is usually not very efficient: LDAP groups are usually not designed for that.

Simple configuration example

Create a file called in your config directorydefault-ldap-users-directory-config.xml

server/default/deploy/nuxeo.ear/config/ in JBoss,
nxserver/config/ in Tomcat.

Then copy this content:

<?xml version="1.0"?>
<component name="org.nuxeo.ecm.directory.ldap.storage.users">

 <require>org.nuxeo.ecm.directory.ldap.LDAPDirectoryFactory</require>

 <!-- the groups SQL directories are required to make this bundle work -->
 <require>org.nuxeo.ecm.directory.sql.storage</require>

 <extension target="org.nuxeo.ecm.directory.ldap.LDAPDirectoryFactory"

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

98
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

 point="servers">

 <!-- Configuration of a server connection

 A single server declaration can point to a cluster of replicated
 servers (using OpenLDAP's slapd + sluprd for instance). To leverage
 such a cluster and improve availability, please provide one
 <ldapUrl/> tag for each replica of the cluster.
 -->
 <server name="default">

 <ldapUrl>ldap://localhost:389</ldapUrl>
 <!-- Optional servers from the same cluster for failover
 and load balancing:

 <ldapUrl>ldap://server2:389</ldapUrl>
 <ldapUrl>ldaps://server3:389</ldapUrl>

 "ldaps" means TLS/SSL connection.
 -->

 <!-- Credentials used by Nuxeo5 to browse the directory, create
 and modify entries.

 Only the authentication of users (bind) use the credentials entered
 through the login form if any.
 -->
 <bindDn>cn=nuxeo5,ou=applications,dc=example,dc=com</bindDn>
 <bindPassword>changeme</bindPassword>
 </server>

 </extension>

 <extension target="org.nuxeo.ecm.directory.ldap.LDAPDirectoryFactory"
 point="directories">

 <directory name="userDirectory">
 <server>default</server>
 <schema>user</schema>
 <idField>username</idField>
 <passwordField>password</passwordField>

 <searchBaseDn>ou=people,dc=example,dc=com</searchBaseDn>
 <searchClass>person</searchClass>
 <!-- To additionally restricte entries you can add an
 arbitrary search filter such as the following:

 <searchFilter>(&(sn=toto*)(myCustomAttribute=somevalue))</searchFilter>

 Beware that "&" writes "&" in XML.
 -->

 <!-- use subtree if the people branch is nested -->
 <searchScope>onelevel</searchScope>

 <!-- using 'subany', search will match *toto*. use 'subfinal' to
 match *toto and 'subinitial' to match toto*. subinitial is the
 default behaviour-->
 <substringMatchType>subany</substringMatchType>

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

99
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

 <readOnly>false</readOnly>

 <!-- comment <cache* /> tags to disable the cache -->
 <!-- cache timeout in seconds -->
 <cacheTimeout>3600</cacheTimeout>

 <!-- maximum number of cached entries before global invalidation -->
 <cacheMaxSize>1000</cacheMaxSize>

 <!--
 If the id field is not returned by the search, we set it with the searched
entry, probably the login.
 Before setting it, you can change its case. Accepted values are 'lower' and
'upper',
 anything else will not change the case.
 -->
 <missingIdFieldCase>lower</missingIdFieldCase>

 <!-- Maximum number of entries returned by the search -->
 <querySizeLimit>200</querySizeLimit>

 <!-- Time to wait for a search to finish. 0 to wait indefinitely -->
 <queryTimeLimit>0</queryTimeLimit>

 <creationBaseDn>ou=people,dc=example,dc=com</creationBaseDn>
 <creationClass>top</creationClass>
 <creationClass>person</creationClass>
 <creationClass>organizationalPerson</creationClass>
 <creationClass>inetOrgPerson</creationClass>

 <rdnAttribute>uid</rdnAttribute>
 <fieldMapping name="username">uid</fieldMapping>
 <fieldMapping name="password">userPassword</fieldMapping>
 <fieldMapping name="firstName">givenName</fieldMapping>
 <fieldMapping name="lastName">sn</fieldMapping>
 <fieldMapping name="company">o</fieldMapping>
 <fieldMapping name="email">mail</fieldMapping>

 <references>

 <inverseReference field="groups" directory="groupDirectory"
 dualReferenceField="members" />

 </references>

 </directory>

 </extension>

 <extension target="org.nuxeo.ecm.platform.usermanager.UserService"
point="userManager">

 <userManager>
 <defaultAdministratorId>johndoe</defaultAdministratorId>
 <defaultGroup>members</defaultGroup>
 </userManager>

 </extension>

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

100
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

</component>

Then you should edit this file:

to set the correct server
<ldapUrl>
<bindDn> and <bindPassword>

to set the correct LDAP config:
<searchBaseDN>
<searchClass>
<fieldMapping>

If you want Nuxeo to be able to create users in the LDAP directory, you will need to:

make sure the user you use to access LDAP has write access,
define the and associated parameters.<creationBaseDn>

The third contribution is here to define the default mapping:

since the user won't exists anymore, you should assign at least one user to be administrator using Administrator <defaultAdministra
,torId>

you can also choose to make all users members of the default "members" group using .<defaultGroup>

Once done, restart the Nuxeo server, and you should now be able to authenticate against LDAP.

For a more detailed view about possible configuration see:

LDAPDirectory and associated extension points
UserManager extension point

The folder in source code of the module further provides sample ldiff files and OpenLDAPldaptools/ nuxeo-platform-directory-ldap
configuration file to help you setup a sample OpenLDAP server you can use as a base setup to build your corporate directory.

Using Active Directory

If you use Active Directory and want to use it with Nuxeo you will need to:

be sure that LDAP mode is enabled on the Active Directory server,
get the schema info (because Active Directory schema changes depending on a lot of external factors).

Once you have this information, you can connect Nuxeo to Active Directory as it it was a real LDAP server.

Active Directory users are advised to use the aggregated global catalog port number (3268 by default) instead of the default LDAP port (389) in
order to avoid getting referrals request to sub directories blocked by corporate firewalls.

Usually with AD you will have to map the field "username" to "sAMAccountName".

Known issues

https://jira.nuxeo.com/browse/NXP-6574 prevents the LDAP contribution from being activated.
Quick solution is to put in comments the part in "<directory name="userDirectory">...</directory>" templates/common/config

 (or overwrite that file with a custom template)./default-sql-directories-bundle.xml

Debug information

If you encounter some difficulties configuring LDAP, the first step is to get more details about what happens.

In the configuration, increase the log level for org.nuxeo.ecm.directory and org.nuxeo.runtime.model.impl:Log4J

If you want to roll back the changes, simply delete the file and restart the server.default-ldap-users-directory-config.xml

http://doc.nuxeo.com/x/GATF
http://explorer.nuxeo.org/nuxeo/site/distribution/current/viewComponent/org.nuxeo.ecm.directory.ldap.LDAPDirectoryFactory
http://explorer.nuxeo.org/nuxeo/site/distribution/current/viewExtensionPoint/org.nuxeo.ecm.platform.usermanager.UserService--userManager
http://hg.nuxeo.org/nuxeo/nuxeo-services/file/5.4/nuxeo-platform-directory/nuxeo-platform-directory-ldap/ldaptools/
https://jira.nuxeo.com/browse/NXP-6574
https://doc.nuxeo.com/display/GLOS/Log4J

 Nuxeo Enterprise Platform 5.4 Documentation

101
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

<category name="org.nuxeo.ecm.directory">
 <priority value="DEBUG" />
</category>
<category name="org.nuxeo.runtime.model.impl">
 <priority value="INFO" />
</category>

This will give you more informations such as:

Is your XML contribution properly loaded ? Search for the component name of your contribution in the log file (for instance
"org.nuxeo.ecm.directory.ldap.storage.users").
Did the LDAP directory initialized ? If so, your "servers" extension point is working.
What is the LDAP request sent when you try to log in Nuxeo ? You must be run the same request outside Nuxeo, using your preferred
LDAP tool.

Recommended method to define LDAP contributions

Since version 5.4.2 and because of , the contribution to plug Nuxeo DM to LDAP needs to define directories whose name is differentNXP-6574
from the default ones (userDirectory for users, groupDirectory for groups). Then you need to use the user manager to specify the name of the
directories which will be used for authentication, searching, ...
Therefore you should apply the changes described below to your existing LDAP contributions:

http://doc.nuxeo.com/x/GATF
https://jira.nuxeo.com/browse/NXP-6574

 Nuxeo Enterprise Platform 5.4 Documentation

102
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

<!-- directory for users -->
 <directory name="userLdapDirectory">
 ..
 <inverseReference field="groups" directory="groupLdapDirectory"
 dualReferenceField="members" />
 </directory>

<!-- directory for groups -->
 <directory name="groupLdapDirectory">
 ..
 <ldapReference field="members" directory="userLdapDirectory"
forceDnConsistencyCheck="false" staticAttributeId="uniqueMember"
dynamicAttributeId="memberURL"/>

 <ldapReference field="subGroups" directory="groupLdapDirectory"
forceDnConsistencyCheck="false" staticAttributeId="uniqueMember"
dynamicAttributeId="memberURL"/>
 ...
 </directory>

<!-- definition in the user manager -->
 <extension target="org.nuxeo.ecm.platform.usermanager.UserService"
point="userManager">
 <userManager>
 ...
 <users>
 <directory>userLdapDirectory</directory>
 </users>
 ...
 <groups>
 <directory>groupLdapDirectory</directory>
 </groups>
 ...
 </userManager>
 </extension>

See attached files for templates for LDAP configuration.

This method applies to multidirectory too.

Using CAS2 authentication

A typical CAS use case would be the portal. In this n-tiers architecture, the identity is to be shared between the components.
The following diagram depicts the interactions between a client, a portal, a CAS server and nuxeo for establishing the authentication context.

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

103
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

(a) Portal service ticket

The first phase is the portal authentication (a1).

GET /home

The client is redirected to the CAS server for entering it's credentials (a2).

GET /cas/login?service=http://127.0.0.1:9090/ticket/validate

Once the credentials are entered, is they are valid, the CAS server generates a service ticket .ST
The client is redirected by the CAS server back onto the portal using the URL (a3).service

http://127.0.0.1:9090/ticket/validate?ticket=ST-81-rCbbm5oj9geCKjvhNCvJ-cas

(b) Proxy granting ticket

In the second phase, the portal validate the service ticket and request for a proxy granting ticket (b1).PGT

In the same time, CAS server generate a ticket granting and register it client side using the cookie . If the cookie is alreadyCASTGC
present in the request headers, then the client is automatically redirected to the portal.

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

104
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

GET /cas/serviceValidate?ticket=ST-81-rCbbm5oj9geCKjvhNCvJ-cas&

service=http://127.0.0.1:9090/ticket/validate&pgtUrl=http://127.0.0.1:9090
/ticket/accept

If the ticket is valid, the CAS server invoke the callback with two parameters and (b2).pgtUrl pgtIou pgtId

GET /ticket/accept?pgtIou=PGTIOU-34-jJZH23r2wbKUqbc3dLFt-cas&
 pgtId=TGT-45-sSnfcQ7A0TXGsQR2gJONm74rObZ0qRQzhENJWTdZJG5rcGN2T5-cas

In case of success, the server respond to the portal with the following content

<cas:serviceResponse xmlns:cas='http://www.yale.edu/tp/cas'>
.<cas:authenticationSuccess>
..<cas:user>slacoin</cas:user>
..<cas:proxyGrantingTicket>PGTIOU-34-jJZH23r2wbKUqbc3dLFt-cas</cas:proxyGrantingTicket
>
.</cas:authenticationSuccess>
</cas:serviceResponse

The is used portal side for retrieving the accepted .pgtIou PGT

(c) Nuxeo proxy ticket

In the third phase, the portal ask the CAS server for a new service ticket that will give him access to
the nuxeo server using the client identity (c1).

GET
/cas/proxy?pgt=TGT-45-sSnfcQ7A0TXGsQR2gJONm74rObZ0qRQzhENJWTdZJG5rcGN2T5-c
as&
 targetService=http://127.0.0.1:8080/nuxeo/atom/cmis

The CAS server generate a new ST and respond to the portal with the following content

<cas:serviceResponse xmlns:cas='http://www.yale.edu/tp/cas'>
.<cas:proxySuccess>
..<cas:proxyTicket>ST-82-20eCHgCqvMCvnP6AmZmz-cas</cas:proxyTicket>
.</cas:proxySuccess>
</cas:serviceResponse>

Then the proxy ticket is used by the portal for login into nuxeo (c2).

GET /nuxeo/atom/cmis?ticket=ST-82-20eCHgCqvMCvnP6AmZmz-cas
 &proxy=http://127.0.0.1:9090/ticket/accept
 &service=http:127.0.0.1:8080/nuxeo/atom/cmis

The nuxeo server validate the ticket by invoking the portal server (c3).

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

105
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

GET
/cas/proxyValidate?ticket=ST-82-20eCHgCqvMCvnP6AmZmz-cas&service=http:127.
0.0.1:8080/nuxeo/atom/cmis

If the ticket is valid, the CAS server send the following response

<cas:serviceResponse xmlns:cas='http://www.yale.edu/tp/cas'>
.<cas:authenticationSuccess>
..<cas:user>slacoin</cas>
..<cas:proxyGrantingTicket>PGTIOU-34-jJZH23r2wbKUqbc3dLFt-cas</cas:proxyGrantingTicket
>
..<cas:proxies>
...<cas:proxy>http://127.0.0.1:9090/ticket/accept</cas:proxy>
..</cas:proxies>
.</cas:authenticationSuccess>
</cas>

The nuxeo server create an http session and send the atom pub response message

<?xml version='1.0' encoding='UTF-8'?>
<app:service xmlns:app="http://www.w3.org/2007/app"
 xmlns:atom="http://www.w3.org/2005/Atom"
 xmlns:cmis="http://docs.oasis-open.org/ns/cmis/core/200908/"
 xmlns:cmisra="http://docs.oasis-open.org/ns/cmis/restatom/200908/">
 <app:workspace>...</app:workspace>
</app:service>

The portal save the client context for being able to invoke Nuxeo using the same HTTP session.

(d) Invoking nuxeo

The nuxeo HTTP session id is retrieved from the portal session context and invoked.

GET /nuxeo/atom/cmis?repositoryId=default

Using OAuth

Table of contents:
Background information about OAuth

Problem to solve
3-Legged OAuth
2-Legged OAuth (Signed Fetch)
OAuth Signature

OAuth in Nuxeo EP
Managing Service Consumers in Nuxeo

Generic consumers
The special case of Nuxeo/Shindig
Nuxeo OAuth Urls

Managing Service providers in Nuxeo
Managing Tokens

Background information about OAuth

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

106
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

This section proposes a quick introduction to OAuth concepts.

For a detailed presentation of OAuth, you should read the .OAuth 1.0 Protocol specification

Problem to solve

OAuth addresses authentication issues in cases that include:

a Service Provider that exposes a web service,
a User that wants to access the service,
a Service Consumer that will access the Service Provider on behalf of the user.

In this context, the end user may have different accounts on each application.

The User may also want to grant more or less rights to the consumer. Typically, when Application A access to services of Application B, it may be
granted only read accesses. But when using Application C, users wants to grant Read/Write.

3-Legged OAuth

OAuth provides a solution to handle this problem.

The synopsis of the authentication goes like that:

User wants to access a module of Application A that needs to access a Service hosted by B (for example an OpenSocial Gadget)
Application A will request a "Request Token" from Application B
Application B will respond with:

a Request Token
an authentication URL

User will be redirected to the authentication URL on the Application B
User will then

authenticate against Application B
accept the access request from Application A displayed by Application B (and maybe specify some associated security)

User will then be redirected to Application A (on the callback url, with the token and a random verifier)
Application A will receive the request

call Application B to exchange the Request Token for an Access Token
Application B will only allow the exchange if

the verifier is OK
the Request Token has been granted by user

Application A will then
store the Access Token
use it to access Service in B on behalf of User

The interesting part is that:

User does not have to give Application A his login/password on Application B
User can choose how Application A can access his data on Application B

define security if needed
he should also be able to revoke the grant at any time

Application A can store the token and reuse it as long as it is valid (no more authentication needed)
Application A and B do not need to share the same user DB

2-Legged OAuth (Signed Fetch)

http://doc.nuxeo.com/x/GATF
http://tools.ietf.org/html/rfc5849

 Nuxeo Enterprise Platform 5.4 Documentation

107
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

Of course 3-Legged OAuth is not always the best option. In some situations, you only want to do a server-to-server authentication.

To answer this use case, OAuth supports a simple mode that will only use the OAuth signature system (see below) to have a trusted
communication between two servers.

OAuth Signature

An important part of OAuth is that the http requests have to be signed:

to be able to verify the identity of the caller
to be sure the request was not modified during the transfer

For that OAuth can use 2 different signing methods:

HMAC symmetric signature (Shared Secret)
RSA1 asymmetric signature (Public /Private keys)

All requests using OAuth (2-Legged or 3-Legged) are signed using one of these 2 signature method.
The signature method is part of the request and may be chosen by the client, but the server may also enforce one of them.

In terms of security both methods have pros and cons, but RSA1 is generally more expensive.

OAuth in Nuxeo EP

Managing Service Consumers in Nuxeo

Generic consumers

Consumers are declared in Nuxeo OAuthConsumerRegistry.

You can access this service via the Admin Center / OAuth / Consumers.

To define a OAuth Consumer you will need to enter:

a Consumer Key: identifier of the application
a Consumer Secret (HMAC key) and/or a RSA1 public key
a callback url

only needed for 3-Legged OAuth
most consumers will automatically provide this callback url as part of the OAuth dialog

a security mode
you can restrain consumer usage to 3-Legged OAuth
you can accept 2-Legged OAuth (i.e. only server-to-server authentication), in this case you will need to choose how the nuxeo
user will be chosen:

OpenSocial viewer
OpenSocial owner
Dedicated login

Depending on the consumer, it may not allow all possibilities:

may be only HMAC signature will be supported
may be only 3-Legged OAuth will be supported
...

For example, you may want to use iGoogle as a consumer of some of your Nuxeo Gadgets and services.
In this case, you will need to a consumer with:

www.google.com as consumer key
use RSA1 key as documented here
provide in Nuxeo the callback url http://oauth.gmodules.com/gadgets/oauthcallback

http://doc.nuxeo.com/x/GATF
http://code.google.com/intl/fr/apis/gadgets/docs/oauth.html#rsa
http://oauth.gmodules.com/gadgets/oauthcallback

 Nuxeo Enterprise Platform 5.4 Documentation

108
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

1.
2.
3.
4.

5.

The special case of Nuxeo/Shindig

When Nuxeo is both the provider and the consumer, 2-Legged OAuth (signed Fetch) is used with a HMAC Signature. The HMAC secret is
dynamically generated at runtime and shared between Shindig and Nuxeo in memory.

Nuxeo OAuth Urls

Access URL: /nuxeo/oauth/access-token (url to request an Access Token)

Request URL: /nuxeo/oauth/request-token (url to request a Request Token)

Authorization URL: /nuxeo/oauth/authorize (url used by a User to grant access)

Managing Service providers in Nuxeo

Service providers are declared in OAuthServiceProviderRegistry.

You can access it via Admin Cener / OAuth / Service providers.

You will have to enter the following information:

a gadget URL (AppId): the identifier of the gadget inside Nuxeo that will use the service
a service Name: the name of the service as used in the makeRequest call
a consumer Key: the consumer key (login) that must be used to call the service
a consumer Secret (HMAC key): a shared secret used to sign OAuth requests
OAuth callback urls

OAuth callback urls will only be used if the gadget does not provide the needed information as part of the Gadget Spec (it should). If the consumer
secret is empty, Nuxeo with use the server global RSA1 key.

When looking up the right service provider, Nuxeo will do the search based on the service Name and the AppId and fallback to the closest match.

Managing Tokens

OAuth requires Nuxeo to manage Tokens:

Request Tokens are managed in memory (transient)
Access Token are managed in the SQL DB

You can use the Admin Center screens to:

see the Tokens that Nuxeo granted or was granted
revoke (delete) the Tokens

Using Shibboleth

Introduction

Shibboleth has two major halves: an identity provider (IdP), which authenticates users and releases selected information about them, and a
service provider (SP) that accepts and processes the user data before making access control decisions or passing the information to protected
applications. These entities trust each other to properly safeguard user data and sensitive resources.

Here is the process of authentication :

the user accesses a protected resource
the SP determines an IdP and issues the authentication request
the user authenticates to the IdP
the IdP issues a response to the SP

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

109
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

5.
6.

the SP decodes the message and extracts the attributes
the browser is redirected to the protected resource

For details, see .https://spaces.internet2.edu/display/SHIB2/FlowsAndConfig

Authentication plugin

The SHIB_AUTH plugin is implemented by the class org.nuxeo.ecm.platform.shibboleth.auth.ShibbolethAuthenticationPlugi
. It authenticates the user based on HTTP headers received from the SP. It also creates (or updates) an entry in the userDirectory for this user.n

As the Shibboleth attributes values are passed by HTTP headers, the service org.nuxeo.ecm.platform.shibboleth.service.Shibbole
 has been added to configure the mapping between the user metadata and the headers names.thAuthenticationService

Installation

Module installation

The easy way

The Shibboleth authentication module could be installed through the Marketplace with the Shibboleth Authentication package.
See .Shibboleth Authentication

The manual way

You can also download directly the built jar, and deploy it into your Tomcat or JBoss instance, in the directory.bundles

Download link: nuxeo-platform-login-shibboleth.jar

If you did the installation by just deploying the into your Nuxeo instance, you need to add a newnuxeo-platform-login-shibboleth.jar
configuration file to define the login and logout URLs, the mapping between the user metadata and the headers names.

Add a new file named in the directory of your server.shibboleth-config.xml config/

$NUXEO/nxserver/config for a Tomcat distribution
$NUXEO/server/default/deploy/nuxeo.ear/config for a JBoss distribution

shibboleth-config.xml

<?xml version="1.0"?>
<component name="org.nuxeo.ecm.platform.login.shibboleth.config">
<extension
 target="org.nuxeo.ecm.platform.shibboleth.service.ShibbolethAuthenticationService"
 point="config">
 <config>
 <uidHeaders>
 <default>uid</default>
 </uidHeaders>

 <loginURL>https://host/Shibboleth.sso/WAYF</loginURL>
 <logoutURL>https://host/Shibboleth.sso/Logout</logoutURL>

 <fieldMapping header="uid">username</fieldMapping>
 <fieldMapping header="mail">email</fieldMapping>
 </config>
 </extension>
</component>

Overriding the default Authentication chain

To enable the Shibboleth authentication, you need to add the Shibboleth plugin to the authentication chain.

To override the default authentication chain in Nuxeo DM, add a new file named authentication-chain-config.xml
in the directory of your server.config/

http://doc.nuxeo.com/x/GATF
https://spaces.internet2.edu/display/SHIB2/FlowsAndConfig
https://connect.nuxeo.com/nuxeo/site/marketplace/package/shibboleth-authentication-1.0.0
https://maven.nuxeo.org/nexus/service/local/artifact/maven/redirect?r=public-releases&g=org.nuxeo.ecm.platform&a=nuxeo-platform-login-shibboleth&v=5.4.0.1&e=jar

 Nuxeo Enterprise Platform 5.4 Documentation

110
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

authentication-chain-config.xml

<?xml version="1.0"?>
<component name="org.nuxeo.ecm.platform.your.authentication.chain.config">
 <extension
 target="org.nuxeo.ecm.platform.ui.web.auth.service.PluggableAuthenticationService"
 point="chain">
 <authenticationChain>
 <plugins>
 <plugin>BASIC_AUTH</plugin>
 <plugin>SHIB_AUTH</plugin>
 <plugin>FORM_AUTH</plugin>
 <plugin>WEBENGINE_FORM_AUTH</plugin>
 <plugin>ANONYMOUS_AUTH</plugin>
 <plugin>WEBSERVICES_AUTH</plugin>
 </plugins>
 </authenticationChain>
 </extension>
</component>

If you already define your own authentication chain in any of your config or contrib files, you just need
to add the plugin into your own chain.SHIB_AUTH

Anonymous authentication compatibility

As it is not possible with Nuxeo to write access rules based on resource URLs, Shibboleth has to be enabled. By adding theLazySession
ANONYMOUS_AUTH in the authentication chain, the Shibboleth login will only be asked when accessing a restricted resource.

For that, the willorg.nuxeo.ecm.platform.shibboleth.auth.exceptionhandling.ShibbolethSecurityExceptionHandler
redirect to the login URL when a NuxeoSecurityException is thrown while the current user is anonymous.

To activate it, add a new file named in the directory of your server.login-anonymous-config.xml config/

login-anonymous-config.xml

<?xml version="1.0"?>
<component name="org.nuxeo.ecm.platform.your.anonymous.user.config">
 <extension target="org.nuxeo.ecm.platform.usermanager.UserService"
 point="userManager">
 <userManager>
 <users>
 <anonymousUser id="Guest">
 <property name="firstName">Guest</property>
 <property name="lastName">User</property>
 </anonymousUser>
 </users>
 </userManager>
 </extension>
</component>

Full sample configuration file

Here is a sample configuration file containing everything you need to set up the shibboleth authentication module:

http://doc.nuxeo.com/x/GATF
https://spaces.internet2.edu/display/SHIB/LazySession

 Nuxeo Enterprise Platform 5.4 Documentation

111
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

<component name="sample.shibboleth.config">

 <require>org.nuxeo.ecm.platform.ui.web.auth.WebEngineConfig</require>
 <require>org.nuxeo.ecm.platform.usermanager.UserManagerImpl</require>

 <extension

target="org.nuxeo.ecm.platform.ui.web.auth.service.PluggableAuthenticationService"
 point="chain">
 <authenticationChain>
 <plugins>
 <plugin>BASIC_AUTH</plugin>
 <plugin>SHIB_AUTH</plugin>
 <plugin>ANONYMOUS_AUTH</plugin>
 </plugins>
 </authenticationChain>
 </extension>

 <extension
 target="org.nuxeo.ecm.platform.shibboleth.service.ShibbolethAuthenticationService"
 point="config">
 <config>
 <uidHeaders>
 <default>uid</default>
 </uidHeaders>

 <loginURL>https://host/Shibboleth.sso/WAYF</loginURL>
 <logoutURL>https://host/Shibboleth.sso/Logout</logoutURL>

 <fieldMapping header="uid">username</fieldMapping>
 <fieldMapping header="mail">email</fieldMapping>
 </config>
 </extension>

 <!-- Add an Anonymous user -->
 <extension target="org.nuxeo.ecm.platform.usermanager.UserService"
 point="userManager">
 <userManager>
 <users>
 <anonymousUser id="Guest">
 <property name="firstName">Guest</property>
 <property name="lastName">User</property>
 </anonymousUser>
 </users>
 </userManager>
 </extension>

</component>

Source code

The source code of the Shibboleth authentication module can be found as part of the addon, .nuxeo-platform-login here

ShibbGroups addon

ShibbGroups are virtual groups based on an EL expression with Shibboleth attributes. A new user management tab is added to create and edit

http://doc.nuxeo.com/x/GATF
http://hg.nuxeo.org/addons/nuxeo-platform-login

 Nuxeo Enterprise Platform 5.4 Documentation

112
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

them. The definitions are stored in the directory.shibbGroup

The class computes at login time theorg.nuxeo.ecm.platform.shibboleth.computedgroups.ShibbolethGroupComputer
ShibbGroups that the current user is member of.

The source code of this addon can be found .here

HTTP and HTTPS reverse-proxy configuration
The Nuxeo webapp can be virtual hosted behind a HTTP/HTTPS reverse proxy, like Apache.

Motivations for virtual hosting

Virtual hosting provides several advantages:

Support for HTTPS
HTTPS support in Apache is easy and flexible to setup. Apache can also be used to handle certificate authentication.

URL filtering
You can use Apache filtering tools to limit the URLs that can be accessed via the reverse proxy.

Handle HTTP cache for static resources
Nuxeo EP generates standard HTTP cache headers for all static resources (images, JavaScript...). These resources are by default
cached on the client side (in the browser cache). For performance reasons, it can be useful to host these resources in the reverse proxy
cache.

Virtual hosting configuration for Apache 2.x

Reverse proxy with mod_proxy

For this configuration, you will need to load and enable the and modules.mod_proxy mod_proxy_http

ProxyPass /nuxeo/ http://Nuxeo5ServerInternalIp:8080/nuxeo/
ProxyPassReverse /nuxeo/ http://Nuxeo5ServerInternalIp:8080/nuxeo
ProxyPreserveHost On

You can also use rewrite rules to achieve the same result:

ProxyVia On
ProxyRequests Off
RewriteEngine On
RewriteRule /nuxeo(.*) http://Nuxeo5ServerInternalIp:8080/nuxeo$1 [P,L]

This configuration will allow you to access the Nuxeo EP webapp via .http://ApacheServer/nuxeo/

The Nuxeo webapp will generate the URLs after reading the http header x-forwarded-host.

Unfortunately, this header does not specify the protocol used, so if your Apache is responding to HTTPS, you will need to send Nuxeo EP a
specific header to indicate the base URL that the webapp must use when generating links.

RequestHeader append nuxeo-virtual-host "https://myDomainName/"

This will require you to load and activate the module.mod_headers

And if you have "client denied by server configuration" error, you must check the access control directives of :mod_proxy

http://doc.nuxeo.com/x/GATF
http://hg.nuxeo.org/addons/nuxeo-platform-shibboleth-groups-web
http://ApacheServer/nuxeo/

 Nuxeo Enterprise Platform 5.4 Documentation

113
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

<Proxy *>
 Order Deny,Allow
 Deny from all
 Allow from 192.168
</Proxy>

Reverse proxy a Webengine site to a myexample.com/mysite url

You need the same configuration from the first section. It is advised to first get it to work before proxying exclusively a Webengine site.

A site request queries both from its own url (/nuxeo/site/mysite) but also gets static resources from the root (/nuxeo/nxthemes ...).
A rewrite configuration for mysite would look like:

RewriteRule ^/nuxeo$ /nuxeo/ [P,L]
RewriteRule ^/mysite$ /mysite/ [P,L]

RewriteCond %{REQUEST_URI} ^/mysite/skin/mysite/.*
RewriteRule ^/mysite/skin/mysite/(.*) http://127.0.0.1:8080/nuxeo/site/skin/mysite/$1
[P,L]

RewriteCond %{REQUEST_URI} ^/mysite/skin/.*
RewriteRule ^/mysite/skin/(.*) http://127.0.0.1:8080/nuxeo/site/skin/mysite/$1 [P,L]

RewriteCond %{REQUEST_URI} ^/mysite/nxthemes-(lib|css)/.*
RewriteRule ^/mysite/(.*) http://127.0.0.1:8080/nuxeo/$1 [P,L]

RewriteCond %{REQUEST_URI} ^/mysite/nxthemes-webwidgets/.*
RewriteRule ^/mysite/(.*) http://127.0.0.1:8080/nuxeo/site/$1 [P,L]

RewriteRule ^/mysite/(.*) http://127.0.0.1:8080/nuxeo/site/mysite/$1 [P,L]

Webengine also needs to know the base of the site, in this case, an empty string instead of /nuxeo/site. This information is passed using the mod_
:headers

RequestHeader append nuxeo-webengine-base-path ""

You can also fetch the static resources from a different path. To do so add a properties to the nuxeo.properties file

org.nuxeo.ecm.webengine.skinPathPrefix=/skin/

Reverse proxy with mod_jk

mod_jk allows you to communicate between Apache and Tomcat via the ajp1.3 protocol.

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

114
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

JkWorkersFile /etc/apache2/jk/workers.properties
JkLogFile /var/log/mod_jk.log
JkLogLevel info
JkMount /nuxeo ajp13
JkMount /nuxeo/* ajp13

The workers.properties file will contain the list of Nuxeo EP Tomcat servers. The AJP13 tomcat listener should be enabled by default on port
8009.

worker.list=ajp13
worker.ajp13.port=8009
worker.ajp13.host=Nuxeo5ServerInternalIp
worker.ajp13.type=ajp13
worker.ajp13.socket_keepalive=1
worker.ajp13.connection_pool_size=50

Once again, if you use HTTPS, you will need to set the Nuxeo-specific header to tell the webapp how to generate URLs:

RequestHeader append nuxeo-virtual-host "https://myDomainName/"

This will require you to load and activate the mod_header module.

Configuring http cache

The Simple cache filter is deprecated, we recommend using the extension point of .filterConfig RequestControllerService

RequestControllerService's filter extension point

This XP lets you contribute customized filter for a given pattern URL.

 <extension
target="org.nuxeo.ecm.platform.web.common.requestcontroller.service.RequestControllerS
ervice"
 point="filterConfig">

 <filterConfig name="filterName" transactional="true" synchonize="true"
 cached="true" private="true" cachetime="3600">
 <pattern>/nuxeo/urlPattern/.*</pattern>
 </filterConfig>
 </extension>

This contribution will ensure that every pattern matching url will go through NuxeoRequestControllerFilter. The header of the corresponding
request will be modified according to the XP configuration. Here is a list of the possible options:

filterConfig
name: name of the Filter.
transactional: use transaction.
synchonize: is synchronized

Example of a filterConfig Registration

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

115
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

1.

2.

3.

cached: if true, add cache-control to header
cacheTime: cache duration.
private: if true, cache is private, public if false.

pattern: url pattern to match

Using Simple Cache Filter

The Nuxeo webapp includes a Servlet Filter that will automatically add header cache to some resources returned by the server.

By using the deployment-fragement.xml you can also put some specific resources behind this filter:

<extension target="web#FILTER">
 <filter-mapping>
 <filter-name>simpleCacheFilter</filter-name>
 <url-pattern>/MyURLsToCache/*</url-pattern>
 </filter-mapping>
</extension>

When Nuxeo EP is virtual hosted with apache you can use to use the reverse-proxy as cache server.mod_cache

You can also use Squid or any other caching system that is compliant with the standard HTTP caching policy.

Advanced configuration
The pages below are about advanced configurations that are not mandatory and are used to integrate new features or change low level
behaviors.

Adding custom templates
JDBC
VCS Configuration

Adding custom templates

The "custom" template folder allows you to add customization such as using multiple databases, configuring services, ...

Add your own template files in directory.templates/custom
You can use either existing or new parameters in these new template files.
From the Admin Center or by manually editing the file, set your parameters' values and set .nuxeo.conf nuxeo.templates=custom
You can refer to custom templates directory with a relative path or to your own custom templates directory with an absolute path.
Edit and set parameter to define the list of existing templates to includecustom/nuxeo.defaults nuxeo.template.includes
(comma separated values); your custom template will be used at last.

 files from included templates are also read.nuxeo.defaults

In case you need multiple customizations, create multiple directories and reference them in a dedicated for each server.nuxeo.conf

JDBC

VCS Configuration

VCS (Visible Content Store) is the default storage engine for Nuxeo documents.

The following are the options available to configure VCS repository in Nuxeo EP 5.3.1. They usually go in a file named default-repository-c
.onfig.xml

Example file

This file contains many more options than are necessary by default.

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

116
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

<?xml version="1.0"?>
<component name="default-repository-config">
 <extension target="org.nuxeo.ecm.core.repository.RepositoryService"
point="repository">
 <repository name="default"
 factory="org.nuxeo.ecm.core.storage.sql.coremodel.SQLRepositoryFactory">
 <repository name="default">
 <clustering enabled="true" delay="1000" />
 <schema>
 <field type="largetext">note</field>
 </schema>
 <indexing>
 <includedTypes>
 <type>File</type>
 <type>Note</type>
 </includedTypes>
 <!-- sample for excluded types -->
 <!--
 <excludedTypes>
 <type>Root</type>
 <type>Workspace</type>
 </excludedTypes>
 -->
 <fulltext analyzer="english"> <!-- PostgreSQL -->
 <index name="default">
 <!-- all props implied -->
 </index>
 <index name="title">
 <field>dc:title</field>
 </index>
 <index name="description">
 <field>dc:description</field>
 </index>
 </fulltext>
 <queryMaker class="org.nuxeo.ecm.core.storage.sql.NXQLQueryMaker" />
 <queryMaker class="org.nuxeo.ecm.core.chemistry.impl.CMISQLQueryMaker" />
 </indexing>
 <binaryStore path="binaries"/>
 <binaryManager class="org.nuxeo.ecm.core.storage.sql.DefaultBinaryManager"/>
 <aclOptimizations enabled="true" readAclMaxSize="4096"/>
 <pathOptimizations enabled="true"/>
 <noDDL>false</noDDL>
 </repository>
 </repository>
 </extension>
</component>

Clustering options

<clustering enabled="true" delay="1000" />

clustering enabled: use to activate Nuxeo clustering (default is , i.e., no clustering).true false
clustering delay: a configurable delay in milliseconds between two checks at the start of each transaction, to know if there are any remote

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

117
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

invalidations.

Schema options

<schema>
 <field type="largetext">note</field>
 <field type="largetext">my:field</field>
 ...
</schema>

field type="largetext": a field that should be stored as a CLOB column inside the database instead of a standard VARCHAR column.

This is important for your large text fields, especially for MySQL, Oracle and SQL Server which have very small defaults for standard text fields.

Using Oracle, if you attempt to save a string too big for the standard NVARCHAR2(2000) field, you will get the error:

java.sql.SQLException: ORA-01461: can bind a LONG value only for insert into a LONG
column

Indexing options

Fulltext

<fulltext disabled="true" analyzer="english" catalog="...">
 ...
</fulltext>

fulltext disabled: use to disable fulltext support, the repository configuration must be updated to have (default is , i.e., fulltexttrue false
enabled).
fulltext analyzer: a fulltext analyzer, the content of this attribute depends on the backend used:

H2: a Lucene analyzer, for instance . The default is an englishorg.apache.lucene.analysis.fr.FrenchAnalyzer
analyzer.
PostgreSQL: a Text Search configuration, for instance . The default is . See french english http://www.postgresql.org/docs/8.3/s
tatic/textsearch-configuration.html
Oracle: an Oracle PARAMETERS for fulltext, as defined by http://download.oracle.com/docs/cd/B19306_01/text.102/b14218/cda

 (see NXP-4035 for details).tadic.htm
Microsoft SQL Server: a fulltext LANGUAGE, for instance , as defined in english http://msdn.microsoft.com/en-us/library/ms187

. The default is .787(v=SQL.90).aspx english
other backends don't have configurable fulltext analyzers.

fulltext catalog: a fulltext catalog, the content of this attribute depends on the backend used:
Microsoft SQL Server: a fulltext CATALOG, the default is .nuxeo
other backends don't need a catalog.

Fulltext indexes are queried in NXQL through the pseudo-field. A non-default index "foo" can be queried using ecm:fulltext ecm:fulltext_
.foo

If no elements are present, then a index with all string and blob fields is used.<index> default

http://doc.nuxeo.com/x/GATF
http://www.postgresql.org/docs/8.3/static/textsearch-configuration.html
http://www.postgresql.org/docs/8.3/static/textsearch-configuration.html
http://download.oracle.com/docs/cd/B19306_01/text.102/b14218/cdatadic.htm
http://download.oracle.com/docs/cd/B19306_01/text.102/b14218/cdatadic.htm
http://msdn.microsoft.com/en-us/library/ms187787(v=SQL.90).aspx
http://msdn.microsoft.com/en-us/library/ms187787(v=SQL.90).aspx

 Nuxeo Enterprise Platform 5.4 Documentation

118
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

<fulltext ...>
 <index name="title" analyzer="..." catalog="...">
 <field>dc:title</field>
 <field>dc:description</field>
 </index>
 <index name="blobs">
 <fieldType>blob</fieldType>
 </index>
 <index name="other">
 <fieldType>string</fieldType>
 <excludeField>dc:title</excludeField >
 </index>
</fulltext>

index name: the name of the index (the default is).default
index analyzer: a fulltext analyzer just for this index. See fulltext options above for details.
index catalog: a fulltext catalog just for this index. See fulltext options above for details.
fieldType: or , the default being both. This selects all these fields for indexing.string blob
field: the name of a field that should be selected for indexing.
excludeField: the name of a field that should not be in the index.

If no , or is present, then all string and blob fields are used.<fieldType> <field> <excludeField>

Query Maker

<queryMaker class="..."/>

queryMaker class: registers a , to extend the query system. The class must implement QueryMaker org.nuxeo.ecm.core.storage.
 (the default is , i.e., the standard NXQL QueryMaker).sql.QueryMaker org.nuxeo.ecm.core.storage.sql.NXQLQueryMaker

There can be serveral elements defined.<queryMaker>

This is not needed (and deprecated) starting with Nuxeo EP 5.3.2.

Binary Store

<binaryManager class="org.nuxeo.ecm.core.storage.sql.XORBinaryManager" key="abc"/>

binaryManager class: the default Binary Manager can be changed using this (the default is to use the standard binary manager that
stores files normally). A new XORBinaryManager has been added, it knows how to do XOR with a pattern on read/write (see the key
below). The on-disk binary store is unchanged (the hash of the files is still the filename), but of course it's now unreadable by humans by
default. One consequence is that for the same file the application-level digest in the Binary object is now different if encryption is enabled.
binaryManager key: the encryption key for the binary manager (if it's doing any encryption). Changing this value will of course render
existing binaries unreadable.

<binaryStore path="/foo/bar"/>

binaryStore path: the filesystem path where the binary store should live. A relative path is interpreted relative to the Nuxeo Framework
home. The default is the directory.binaries

Optimizations

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

119
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

<pathOptimizations enabled="false"/>

pathOptimizations enabled: for PostgreSQL, Oracle and MS SQL Server (and H2), it is possible to disable the path-based optimizations
by using (the default is , i.e., path optimizations enabled).false true

<aclOptimizations enabled="false"/>

aclOptimizations enabled: for PostgreSQL, Oracle and MS SQL Server (and H2), you can disable the read ACL optimizations by using fal
 (the default is , i.e., ACL optimizations enabled).se true

since DM 5.4.1, you can set the property readAclMaxSize to define the size of the larger ACL for a document : this may be useful if you
have mainly affected permissions to a lot of users, instead of using groups (do not set this attribute if you disable ACL optimizations).

Database creation option

<noDDL>true</noDDL>

Set the value noDDL to to execute no DDL (Data Definition Language). The default is .true false

When this is , VCS will assume that no new structure has to be created in the database. This means that none of these statements will betrue
executed:

CREATE TABLE, , for a new schema or complex property,CREATE INDEX ALTER TABLE ADD CONSTRAINT
ALTER TABLE ADD column for a new property in a schema,
CREATE FUNCTION, , for VCS internal stored procedures and migration steps.CREATE PROCEDURE CREATE TRIGGER

The only statements that VCS will execute are:

INSERT, , for data changes,UPDATE DELETE
calling of stored procedures.

This means that all tables, indexes, triggers and stored procedures needed by VCS have to be created beforehand, either by a previous execution
when the flag was , or by a manual execution of a SQL script from a previously-created Nuxeo instance.false

This option is typically needed if you configure the VCS connection with a username who is not the owner of the database, usually for security
considerations.

Server start and stop
On this page, you will see how to start and stop your Nuxeo application.

Nuxeo applications come with a Control Panel that allows you to start and stop the server easily, and to access more administration features.

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

120
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

1.

2.

3.

1.

The Control Panel gives you access to:

A summary of the server status: is it running, is stopped, etc...
The logs of the server: the console and server logs are information of the tasks the server is doing and messages on how it is processing
these tasks.
The : the administrators' Swiss Army knife.Nuxeo Shell

Here are the different ways to start and stop your Nuxeo application, depending on your OS:
Starting your Nuxeo application

Starting your application on Windows
Starting your application on Linux
Starting your application on Mac OS X

Stopping your Nuxeo application

Starting your Nuxeo application

Depending on your OS, there are different ways to start the application. The steps below show how to use the Control Panel to start the server.
However, you can use the command below in a terminal if you prefer. From the , execute . You can refer$NUXEO_HOME/bin nuxeoctl start
to the for more information on the command and the Control Panel.nuxeoctl and Control Panel usage nuxeoctl

Starting your application on Windows

To start your server:

Open the Nuxeo Control Panel.

The Nuxeo Control Panel opens.
Click on the button.Start
Starting the Nuxeo server takes between 30 sec and several minutes, depending on your hardware and the distribution you
have chosen to install.
When the server is started, the button becomes a button.Start Stop
Open a browser and type the URL .http://localhost:8080/nuxeo/

On 5.4.0-based versions, you can directly log in to your application using the user name and the Administrator A
 password and start using your application.dministrator

The dedicated user guides will help you figure out the main features of Nuxeo products.
Since version 5.4.1, you need to set up your application's configuration using the displayed .startup wizard

How to open the Nuxeo Control Panel

By default, you cannot run two Nuxeo applications at the same time. If you want to run two Nuxeo applications at the same time (for
instance a Nuxeo DM and a Nuxeo DAM), you need to used by one of the Nuxeo servers.change the default port

Depending on how you installed your application, you can open the Nuxeo Control Panel in two different ways.
See below for the appropriate command.

http://doc.nuxeo.com/x/GATF
http://localhost:8080/nuxeo/
https://doc.nuxeo.com/pages/createpage.action?spaceKey=NXDOC&title=Setup
https://doc.nuxeo.com/display/NXDOC54/Configuration+examples#Configurationexamples-Changethedefaultport%288080%29

 Nuxeo Enterprise Platform 5.4 Documentation

121
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

1.
2.

3.

4.

1.

Nuxeo EP package Command

.exe package (Windows installer) of Nuxeo EP 5.4+ In , click on .Programs/Nuxeo application Nuxeo application

zip package of Nuxeo EP 5.4.0 and 5.4.0.1 In the folder , double-click onC:\Nuxeo application\bin
nuxeoctl.exe.

zip package of Nuxeo EP 5.4.1+ In the folder , double-click onC:\Nuxeo application\bin
nuxeoctl.bat.
In the folder , double-click on StartC:\Nuxeo application
Nuxeo.bat.

On Windows, it is possible to start Nuxeo as a service. Please report the page for guidelines andInstall the application as a Windows service
examples.

Starting your application on Linux

Nuxeo applications are started using scripts.

Launch a terminal and go to your installation directory.
Start the server using the script (located in the directory):nuxeoctl bin

./bin/nuxeoctl gui

The Control Panel opens.
Click on the button.Start
Starting the Nuxeo server takes between 30 sec and several minutes, depending on your hardware and the distribution you
have chosen to install.
When the server is started, the button becomes a button.Start Stop
Open a browser and type the URL .http://localhost:8080/nuxeo/

On 5.4.0-based versions, you can directly log in to your application the user name and the Administrator Adminis
 password and start using your application.trator

The dedicated user guides will help you figure out the main features of Nuxeo products.
Since version 5.4.1, you need to set up your application's configuration using the displayed .startup wizard

Starting your application on Mac OS X

Mac OS users can use either the or some Mac OS convenient commands (see below).same steps as Linux users

On Windows 7, you need to run the nuxeoctl.bat and Start Nuxeo.bat commands as an administrator if you haven't installed your Nuxeo
application at the root of (for instance in). To run them as an administrator, right-click on the command andC: C:\Program Files
click on "Run as administrator".

The command used to launch the Control Panel may not be executable by default. If it is the case, in the terminal
go to the directory of Nuxeo and type the line below to be able to use it:bin
chmod +x *.sh *ctl

http://doc.nuxeo.com/x/GATF
http://localhost:8080/nuxeo/
https://doc.nuxeo.com/pages/createpage.action?spaceKey=NXDOC&title=Setup

 Nuxeo Enterprise Platform 5.4 Documentation

122
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

1.

2.

3.

1.

1.

2.

To start your Nuxeo application:

From the Finder, click on "Start Nuxeo.command". You can also drag and drop the start script in the terminal and press
Enter.

The Control Panel opens.
Click on the button.Start
Starting the Nuxeo server takes between 30 sec and several minutes, depending on your hardware and the distribution you
have chosen to install.
When the server is started, the button becomes a button.Start Stop
Open a browser and type the URL .http://localhost:8080/nuxeo/

On 5.4.0-based versions, you can directly log in to your application the user name and the Administrator Adminis
 password and start using your application.trator

The dedicated user guides will help you figure out the main features of Nuxeo products.
Since version 5.4.1, you need to set up your application's configuration using the displayed .startup wizard

Stopping your Nuxeo application

The steps to stop your Nuxeo application are the same for all operating systems.

To stop your server:
On the Control Panel, click on the button.Stop
Stopping the server takes several seconds. When the server is stopped, the button becomes a button.Stop Start
Close the Control Panel.

nuxeoctl and Control Panel usage

nuxeoctl usage

The script enables various options and commands (explained in details below).nuxeoctl

Here is the Shell/Batch script usage:

nuxeoctl [gui|nogui]
(help|start|stop|restart|configure|wizard|console|status|startbg|restartbg|pack|mp-lis
t|mp-add|mp-install|mp-uninstall|mp-remove|mp-reset) [additional parameters]

GUI options

Option Description

gui Launcher with a graphical user interface.
On Linux/Mac OS X, default is in headless/console mode.
On Windows, the option is activated by default.gui

nogui Windows only. This option deactivates the option which is set bygui
default under Windows.

See for setting Nuxeo Home and Configuration paths.the Environment variables page

The command may not be executable by default. If it is the case, in the terminal go to the directory of Nuxeobin
and type the line below:
chmod +x *.command

If you started the server using the command in the terminal, use the command to stop it.nuxeoctl start nuxeoctl stop

Issue " " to print this information.nuxeoctl help
The options between square brackets are optional.
The options and commands separated by "|" are choices ("|" means "exclusive or").

http://doc.nuxeo.com/x/GATF
http://localhost:8080/nuxeo/
https://doc.nuxeo.com/pages/createpage.action?spaceKey=NXDOC&title=Setup
https://doc.nuxeo.com/display/NXDOC54/Recommended+configurations#Recommendedconfigurations-Define%2Benvironment%2Bvariables

 Nuxeo Enterprise Platform 5.4 Documentation

123
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

Commands

Command Description

help Print this message.

start Start Nuxeo server in background, waiting for effective start.
Useful for batch executions requiring the server being immediately
available after the script returned.

stop Stop any Nuxeo server started with the same file.nuxeo.conf

restart Restart Nuxeo server.

configure Configure Nuxeo server with parameters from .nuxeo.conf

 wizard Enable the wizard (force the wizard to be played again in case the
wizard configuration has already been done).

console Start Nuxeo server in a console mode. Ctrl+C will stop it.

status Print server status (running or not).

startbg Start Nuxeo server in background, without waiting for effective start.
Useful for starting Nuxeo as a service.

restartbg Restart Nuxeo server with a call to after .startbg stop

pack Not implemented. Use Shell script.pack

Additional parameters

All parameters following a command are passed to the Java process when executing the command.
That can be used for specific installs on which you rely on server specific parameters.

Java usage

Launcher can be run as a Java command, without using the Shell () or Batch () script.nuxeoctl nuxeoctl.bat
The equivalent Java command to Shell command is printed at startup. See the line starting with "Launcher command:". It can be reused for
writing your own scripts.

Here is the Java usage:

java [-Dlauncher.java.opts="JVM options"] [-Dnuxeo.home="/path/to/nuxeo"]
[-Dnuxeo.conf="/path/to/nuxeo.conf"] \
 [-Djvmcheck=nofail] -jar "path/to/nuxeo-launcher.jar" \
 [gui]
(help|start|stop|restart|configure|wizard|console|status|startbg|restartbg|pack)
[additional parameters]

Java options

Option Description

launcher.java.opts Parameters for the server JVM (default are -Xms512m -Xmx1024m
-XX:MaxPermSize=512m).

nuxeo.home Nuxeo server root path (default is parent of called script).

nuxeo.conf Path to nuxeo.conf file (default is)$NUXEO_HOME/bin/nuxeo.conf
.

jvmcheck If equals to "nofail", will continue execution even if JVM does not fit
requirements, else will exit.

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

124
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

gui Launcher with a graphical user interface.
On Linux/Mac OS X, default is in headless/console mode.
On Windows, the option is activated by default.gui

Commands

See .the commandsnuxeoctl

Additional parameters

See .the additional parametersnuxeoctl

Exit code values

Exit code values are following the .Linux Standard Base Core Specification 4.1

If the status command was requested, NuxeoCtl will return the following exit status codes:

0 program is running or service is OK

3 program is not running

4 program or service status is unknown

In case of an error while processing any action except for status, NuxeoCtl shall print an error message and exit with a non-zero status code:

1 generic or unspecified error

2 invalid or excess argument(s)

3 unimplemented feature

4 user had insufficient privilege

5 program is not installed

6 program is not configured

7 program is not running

Monitoring

Monitoring Nuxeo

JVM Garbage collector

The garbage collector attempts to reclaim memory used by objects that are no longer in use by the application.

Monitoring the garbage collector can be very useful when tuning the JVM or setting the initial heap size.

Edit and uncomment the following options titled "Log Garbage Collector informations into a file":$NUXEO_HOME/bin/nuxeo.conf

JAVA_OPTS=$JAVA_OPTS -Xloggc:${nuxeo.log.dir}/gc.log -verbose:gc -XX:+PrintGCDetails
-XX:+PrintGCTimeStamps

JBoss

The JBoss LoggingMonitor service can monitor specific attributes of a MBean periodically and log their value to the filename specified.

More info on the LoggingMonitor:http://wiki.jboss.org/wiki/Wiki.jsp?page=JBossLoggingMonitor

Edit and add to the parameter (uncomment it if needed).$NUXEO_HOME/bin/nuxeo.conf "monitor" nuxeo.templates

The logging-monitor jar file is deployed by default in $JBOSS_HOME/server/default/lib.

http://doc.nuxeo.com/x/GATF
http://refspecs.freestandards.org/LSB_4.1.0/LSB-Core-generic/LSB-Core-generic/iniscrptact.html
http://wiki.jboss.org/wiki/Wiki.jsp?page=JBossLoggingMonitor

 Nuxeo Enterprise Platform 5.4 Documentation

125
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

JBoss JVM information

The template will deploy a file named which will produce a file."monitor" jvm-monitor-service.xml jvm.log

JBoss thread pool

The template will deploy a file named which will produce a file."monitor" webthreads-monitor-service.xml webthreads.log

Nuxeo unified datasource connection pool

The template will deploy a file named which will produce a file."monitor" default-ds-monitor-service.xml nuxeo-ds.log

PostgreSQL

The PostgreSQL logs can be setup like in the pgFouine tutorial:

http://pgfouine.projects.postgresql.org/tutorial.html

For instance to log only request slower than 100ms change your postgresql.conf file:

log_min_duration_statement = 100

After a test you can catch the vacuum output like this:

vacuumdb -fzv $DBNAME &> vacuum.log

OS

The sysstat utilities are a collection of performance monitoring tools for Linux that is easy to setup.

You can monitor the system activity like this:

sar -d -o $JBOSS_HOME/server/default/log/sysstat-sar.log 5 720 >/dev/null 2>&1 &

This will monitor the activity every 5s during 1h.

For more information on systat, visit .http://pagesperso-orange.fr/sebastien.godard/

Log analysis

logchart

This is a small script that process the following log files:

Garbage collector logging ()gc.log
Java Virtual Machine logging ()jvm.log
JBoss threads logging ()webthreads.log
NuxeoDS Data source usage ()nuxeo-ds.log
Sysstat sar logging, cpu and disk activity ()sysstat-sar.log
PostgreSQL logs ()pgsql.log
PostgreSQL vacuum output ()vacuum.log

to generate an html report with charts:
http://public.dev.nuxeo.com/~ben/logchart/monitor.html

More information on logchart can be found on the of the project:README.txt
https://hg.nuxeo.org/tools/logchart

Other reporting tools

http://doc.nuxeo.com/x/GATF
http://pgfouine.projects.postgresql.org/tutorial.html
http://pagesperso-orange.fr/sebastien.godard/
http://public.dev.nuxeo.com/~ben/logchart/monitor.html
https://hg.nuxeo.org/tools/logchart

 Nuxeo Enterprise Platform 5.4 Documentation

126
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

1.
2.
3.

1.
2.
3.

4.

GCViewer a tool to visualize data produced by the garbage collector logs: http://www.tagtraum.com/gcviewer.html

kSar a sar grapher that can produce detail PDF report of your system activity: http://ksar.atomique.net/linux.html

pgfouine the PostgreSQL log analyzer which is used by logchart: http://pgfouine.projects.postgresql.org/

Nuxeo Shell (admin's best friend)

Nuxeo Shell is working on top of Nuxeo Content Automation Client and is using the REST API provided by the Automation framework. Because it
is using HTTP to communicate with the server the Shell can be used against any Nuxeo distribution which includes the automation framework.

This also means, most of the Shell commands are implemented as remote Automation Operations.

Overview

Nuxeo Shell comes with a lot of features to improve your experience using the command line. Also, it provides high pluggability so you can extend
it and add new commands in a simple way.

Here is a list of the most important features.

Interactive Execution

The Nuxeo Shell uses library for interactive mode. When you launch the Shell you will automatically enter the interactive mode. This modejline
provides a prompt and auto completion so you can easily browse a Nuxeo repository and execute commands.

Batch Execution

You can also launch the Shell in batch mode. In this mode you can specify a list of commands to be executed and then to return the control back
to the terminal.

There are 3 batch modes available:

Run commands from a file
Run commands from standard input.
Run commands specified on the command line - this is a convenient way to run a short list of commands.

See for more details.the Shell Batch Mode page

Namespaces

Namespaces are commands registry that you can register in the Shell. A command registry is useful to bring inside the Shell a new set of
commands for a specific context without having name clash problems with already existing commands.

To switch to a different namespace use the command.use

So for example, you may want to have command that is listing the content of a Nuxeo Folder when connected to a remote server but still usels
the command when switching to the context to be able to list the content of a directory on the local file system.ls local

Also, namespaces are hierarchical so a namespace my extend another one to adds more commands. Available namespaces are setup by the
features installed in the Shell. By default, Nuxeo Shell provides the following default namespaces:

global - the global namespace. This provides global commands like , 'use', 'cmds' etc.help
local - provides file system commands like: , , , etc. Extends the global namespace.ls cd cat
remote - provides remote commands against a nuxeo server. Extends the global namespace. Available only after connecting to a remote
server.

Availability Info
The Nuxeo Shell can work against any Nuxeo distributions since the version of Nuxeo EP and deprecates the old RMI-based5.4.0.1
Shell.

Downloads
Since 5.4.2, the Nuxeo Shell is available at the Admin Center, in the "Monitor" tab and also as a WebEngine site at http://host:port/nuxe

.o/site/shell

Nuxeo Shell can be installed in Eclipse adding the following repository: Nuxeo ECR - , then install "ECRhttp://osgi.nuxeo.org/p2/ecr/ide/
Shell Feature".

Download the last released version of Nuxeo Shell for a manual install. You can browse available versions at (https://maven.nuxeo.org
or pick).latest

http://doc.nuxeo.com/x/GATF
http://www.tagtraum.com/gcviewer.html
http://ksar.atomique.net/linux.html
http://pgfouine.projects.postgresql.org/
http://host:port/nuxeo/site/shell
http://host:port/nuxeo/site/shell
http://osgi.nuxeo.org/p2/ecr/ide/
http://www.nuxeo.org/static/latest-release/nuxeo-shell
https://maven.nuxeo.org/nexus/index.html#nexus-search;gav~org.nuxeo.shell~nuxeo-shell~~~
https://maven.nuxeo.org/nexus/service/local/artifact/maven/redirect?r=public-releases&g=org.nuxeo.shell&a=nuxeo-shell&v=LATEST&e=jar

 Nuxeo Enterprise Platform 5.4 Documentation

127
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

4.

1.
2.
3.

1.
2.

automation - expose remote automation operations as commands. Available only after connecting to a remote server.

Auto Completion

Auto completion support is provided by . The Shell is leveraging this so that you can auto complete:jline

command names.
parameter names.
parameter values (when the command provide completion).

There are several type of objects that supports completion (like, file, document, etc.) but you can add more by implementing new completors.

Scripting

Nuxeo Shell is providing scripting capabilities through Groovy or Mvel. You can execute thus your Groovy scripts on the server JVM. There are
two ways of executing scripts:

Either invoke a script file from your file system using the command.script
Either write a command that execute a script (instead of executing a remote automation operation).

Documentation Generation

Command documentation pages are automatically generated by the Shell by introspecting the command annotations.

Also, if you want to add more details like in-depth explanation of the command, examples etc. then you can write this in a text file and the Shell
will automatically append it to the generated documentation.

When writing custom documentation you can use tags like {header}, {bold}, {red}, {green} etc. to control the formatting on the terminal.

Automation Chain Execution

You can execute any automation chain exposed by the server by using the or commands. This is useful since you can createrun runonfile
your administration commands in by creating Automation Chains.Nuxeo Studio

Direct Operation execution

The automation mode provides Shell commands for any operation available on the server. These commands are automatically generated from
operation descriptors.

This mode should be used only to debug operations or to execute some operations not exposed through specialized commands by the Shell.

Exception Handling

In the interactive mode unchecked exceptions are printed in red on the screen. Checked exceptions are not printed - only the exception message
is printed out. If you need to see the stack trace of the last exception type .trace

Extensibility

A Shell feature is providing Shell configuration such as namespaces, commands, completors, etc. To extend the capabilities of the Shell you can
register a new feature which will install the new capabilities into the Shell at boot time.

The Shell can be extended wither by modifying the Nuxeo Shell JAR either by adding on the classpath JARs containing additional Nuxeo Shell
features.

See section for more details.Extending the Shell

Usage

Launching the Shell

You can launch the Shell either by running the command:

Security Warning
Because of potential security issues the scripting feature is available only when logged in as Administrator

Experimental
Because of the Shell environment not every automation operation command will correctly work. You should use regular operations
instead.

http://doc.nuxeo.com/x/GATF
https://doc.nuxeo.com/display/Studio/Nuxeo+Online+Services

 Nuxeo Enterprise Platform 5.4 Documentation

128
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

1.
2.
3.

java -jar nuxeo-shell.jar

either by running:

java -cp nuxeo-shell.jar org.nuxeo.shell.Main

The difference is that the first command will launch the Shell in a Swing based terminal (i.e. a desktop application) while the second one will
launch the Shell inside your current terminal.
On some Operating Systems like Windows double clicking the nuxeo-shell.jar will launch the Shell in a Swing based terminal.

When launching the Shell the namespace is automatically activated.local

When connecting to a remote server the Shell will automatically switch to namespace. When disconnecting it will go back to the naremote local
mespace.

To switch between namespaces just use the command. For example if you are in the namespace you can switch to the one byuse remote local
executing the command:

use local

Getting the Shell Version

You can launch the Shell using

java -jar nuxeo-shell.jar --version

to get information about the Shell version and the minimal server version required by the Shell to correctly run against a remote server.

You can also have this information by using the command.version

Connecting to a Server

To connect to a remote Nuxeo Server you must specify the Automation Service URL.

This URL is in the form:

http://host:port/nuxeo/site/automation

For example, in the case of a local server your URL will be:

http://localhost:8080/nuxeo/site/automation

To connect to a server you should use the global command. This command require 3 parameters:connect

the URL of the remote automation service.
the username to login
the password to login

You can either pass thse arguments to the connect command itself or through the command line when starting the Shell.

You can use for the username, for the password and the URL should be given as argument.-u -p

If password is not specified you will be prompted for a password when in interactive mode.

Example

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

129
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

Here is an example of a short session:

After launching the Shell you are in mode. So you can use the provided file system commands like:local

ls - to list the content of the current directory.
cd, , - to change the current directory.pushd popd
cat, , , etc. for other file based operations.mv cp

To connect to a remote server type:

connect http://localhost:8080/nuxeo/site/automation -u Administrator

After the connection is done you are automatically switched in namespace.remote

So doing now a will list the content of the current document. (which for now the root document).ls

To switch back in namespace type:local

use local

To show the current namespace name type:

use

Shell Command Index

Here is a list of namespaces available in the Nuxeo Shell, each namespace providing an index of its commands.

Built-in Commands

Index:
commands
exit
help
install
interactive
settings
trace
use
version

commands

NAME
commands – Print a list of available commands

SYNTAX

Note
When doing file based auto-completion this will be relative to the current directory (that you can change using , , when incd pushd popd
local namespace). The same for document based auto-completion.

The command index is generated using the shell command

help -export [file] -ns [namespace]

Namespace: *global*
Basic commands provided by the shell

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

130
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

commands

ALIASES
cmds

exit

NAME
exit – Exit the interactive shell

SYNTAX

exit [code]

ALIASES
quit

ARGUMENTS

code - [optional] -The exit code. Must be a positive number otherwise 0 is assumed. Defaults to 0.

help

NAME
help – The help command

SYNTAX

help [options] [command]

OPTIONS

-export - If used export all the commands available in a wiki format to the given file. If a directory is given the export will be made in file
help.wiki in that directory.
-ns - [optional] - to be used to filter commands by namespaces when generating the documentation. By default all namespaces are
dumped.

ARGUMENTS

command - [optional] -the name of the command to get help for

install

NAME
install – Install a SH script to launch the shell in the terminal. Available only for UNIX systems.

SYNTAX

install [file]

ARGUMENTS

file - [optional] -the file where to install the shell script. If not used the script will be printed on stdout.

interactive

NAME
interactive – Interactive shell

SYNTAX

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

131
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

interactive

settings

NAME
settings – Print or modify the shell settings.

SYNTAX

settings [options] [name] [value]

OPTIONS

-reset - [flag] - Reset settings to their defaults. Need to restart shell.

ARGUMENTS

name - [optional] -The variable to print or set.
value - [optional] -The variable value to set.

trace

NAME
trace – Print the last error stack trace if any

SYNTAX

trace

use

NAME
use – Switch the current command namespace. If no namespace is specified the current namespace name is printed.

SYNTAX

use [name]

ARGUMENTS

name - [optional] -The command namespace to use

version

NAME
version – Print Nuxeo Shell Version

SYNTAX

version

File System Commands

Namespace: *local*
Commands available on the local file system

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

132
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

Index:
cat
cd
cp
ls
mkdir
mv
popd
pushd
pwd
rm
touch

cat

NAME
cat – Print the content of a file

SYNTAX

cat [file]

ARGUMENTS

file - [optional] -The file to print

cd

NAME
cd – Change the local working directory

SYNTAX

cd file

ARGUMENTS

file - [required] - A local directory to change to

cp

NAME
cp – Copy a file or directory

SYNTAX

cp [options] source destination

OPTIONS

-r - [flag] - Recursive copy directories

ARGUMENTS

source - [required] - The file to copy
destination - [required] - The target file

ls

NAME
ls – List file names in a local directory

SYNTAX

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

133
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

ls [file]

ARGUMENTS

file - [optional] -A local directory to list its content. Defaults to the working directory

mkdir

NAME
mkdir – Create a directory in local file system

SYNTAX

mkdir file

ARGUMENTS

file - [required] - The directory path to create

mv

NAME
mv – Rename a file or directory

SYNTAX

mv source destination

ARGUMENTS

source - [required] - The file to rename
destination - [required] - The target file

popd

NAME
popd – Pop working directory

SYNTAX

popd

pushd

NAME
pushd – Push a new local working directory

SYNTAX

pushd file

ARGUMENTS

file - [required] - A local directory to push

pwd

NAME

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

134
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

pwd – Print the local working directory

SYNTAX

pwd [options]

OPTIONS

-s - [flag] - Use this flag to show the working directory stack

rm

NAME
rm – Remove a file or directory

SYNTAX

rm [options] file

OPTIONS

-r - [flag] - Recursive remove directories

ARGUMENTS

file - [required] - The directory path to create

touch

NAME
touch – Touch a file

SYNTAX

touch file

ARGUMENTS

file - [required] - The file to touch

Nuxeo Server Commands

Index:
audit
cat
cd
connect
cp
disconnect
fire
getfile
getfiles
getp
getrel
lcstate
lock
ls
mkdir
mkrel
mv
perms

Namespace: *remote*
High level commands exposed by a remote Nuxeo Server

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

135
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

popd
publish
pushd
putfile
pwd
query
rename
rm
rmfile
run
runonfile
script
setp
tree
unlock
update

audit

NAME
audit – Run a query against audit service

SYNTAX

audit [options] query

OPTIONS

-s - Use this to change the separator used in query variables. The default is ','
-ctx - Use this to set query variables. Syntax is: "k1=v1,k1=v2"
-max - The max number of rows to return.
-page - The current page to return. To be used in conjunction with -max.
-f - Use this to save results in a file. Otherwise results are printed on the screen.

ARGUMENTS

query - [required] - The query to run. Query is in JPQL format

USAGE

The -page parameter can be used in conjunction with -max parameter to paginate the query result.
The specify the first page use 1 as value, for the second page use 2 and so on.

When saving results in a file - they are in JSON format - and dates are specified using a long value timestamp.
Results printed on the screen are printed in tab separated columns:
eventId category eventDate principal docUUID docType docLifeCycle comment

EXAMPLES

Using date literals in your query:

audit "FROM LogEntry log WHERE log.eventDate > timestamp('2010-11-10 00:00:00')"

Using pagination:

audit "FROM LogEntry log WHERE log.category='studio' ORDER BY log.eventDate DESC" -max
20 -page 1

Using query variables:

audit "FROM LogEntry log WHERE log.category='studio' AND log.eventDate > :startDate"
-ctx "startDate={d 2010-11-10}"

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

136
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

or

audit "FROM LogEntry log WHERE log.category='studio' AND log.eventDate > :startDate"
-ctx "startDate={d 2010-11-10 00:00:00}"

Note that query variable keys must be prefixed with "audit.query." to avoid name clash with other keys in the context.

cat

NAME
cat – Print document details

SYNTAX

cat [options] [doc]

OPTIONS

-all - [flag] - Include all schemas. The -schemas attribute will be ignored if used in conjunction with this one.
-schemas - A filter of schemas to include in the document. Use * for all schemas.

ARGUMENTS

doc - [optional] -The document to print. To use UIDs as references you should prefix them with 'doc:'

cd

NAME
cd – Change the context document

SYNTAX

cd doc

ARGUMENTS

doc - [required] - A reference to the new context document to use. To use UID references prefix them with 'doc:'.

connect

NAME
connect – Connect to a remote automation server

SYNTAX

connect [options] [url]

OPTIONS

-p - The password
-u - The username

ARGUMENTS

url - [optional] -The URL of the automation server

cp

NAME
cp – Copy a document

SYNTAX

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

137
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

cp [options] src dst

OPTIONS

-name - A new name for the copy. I not specified preserve the source name

ARGUMENTS

src - [required] - The document to copy. To use UID references prefix them with 'doc:'.
dst - [required] - The target parent. To use UID references prefix them with 'doc:'.

disconnect

NAME
disconnect – Close current connection to server. If not connected nothing is done.

SYNTAX

disconnect

fire

NAME
fire – Fire a core event in the context of the given document

SYNTAX

fire event [doc]

ARGUMENTS

event - [required] - The event to fire. This parameter is required.
doc - [optional] -The context document. If not specified the current document is used. To use UID references prefix them with 'doc:'.

getfile

NAME
getfile – Get a document attached file

SYNTAX

getfile [options] [doc]

OPTIONS

-todir - An optional target directory to save the file. The default is the current working directory.
-xpath - The XPath of the blob property to get. Defaults to the one used by the File document type.

ARGUMENTS

doc - [optional] -The target document. If not specified the current document is used. To use UID references prefix them with 'doc:'.

getfiles

NAME
getfiles – Get all the files attached to a document

SYNTAX

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

138
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

getfiles [options] [doc]

OPTIONS

-todir - An optional target directory to save the file. The default is the current working directory.
-xpath - The XPath of the blob property to get. Defaults to the one used by the File document type.

ARGUMENTS

doc - [optional] -The target document. If not specified the current document content is used. To use UID references prefix them with
'doc:'.

getp

NAME
getp – Get the value of a document property

SYNTAX

getp [options] [doc]

OPTIONS

-xpath - The XPath of the property to get. This parameter is required.

ARGUMENTS

doc - [optional] -The target document. If not specified the current document is used. To use UID references prefix them with 'doc:'.

getrel

NAME
getrel – Get relations between two documents

SYNTAX

getrel [options] [doc]

OPTIONS

-in - [flag] - Is the document the relation object?
-predicate - The relation predicate - requested.
-out - [flag] - Is the document the relation subject? This flag is by default on true.

ARGUMENTS

doc - [optional] -The document involved in the relation

lcstate

NAME
lcstate – Set or view the current life cycle state of a document

SYNTAX

lcstate [options] [doc]

OPTIONS

-set - If specified The new life cycle state. If not specified then in write mode the local ACL is used and in view mode all ACLs are printed.

ARGUMENTS

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

139
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

doc - [optional] -The target document. If not specified the current document is used. To use UID references prefix them with 'doc:'.

lock

NAME
lock – Lock a document

SYNTAX

lock [options] [doc]

OPTIONS

-key - An optional lock key. If not specified the default one is used.

ARGUMENTS

doc - [optional] -The document to lock. If not specified the current document is used. To use UID references prefix them with 'doc:'.

ls

NAME
ls – List children documents

SYNTAX

ls [options] [doc]

OPTIONS

-uid - [flag] - If used the documents will be printed using the document UID.

ARGUMENTS

doc - [optional] -A document to list its content. If not specified list the current document content. To use UID references prefix them with
'doc:'.

mkdir

NAME
mkdir – Create a document of the given type

SYNTAX

mkdir [options] type path

OPTIONS

-title - An optional document title.

ARGUMENTS

type - [required] - The document type
path - [required] - The document path

mkrel

NAME
mkrel – Create a relation between two documents

SYNTAX

mkrel [options] subject object

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

140
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

OPTIONS

-predicate - The relation predicate - requested.

ARGUMENTS

subject - [required] - The subject of the relation
object - [required] - The object of the relation

mv

NAME
mv – Move a document

SYNTAX

mv [options] src dst

OPTIONS

-name - A new name for the document. I not specified preserve the source name

ARGUMENTS

src - [required] - The document to move. To use UID references prefix them with 'doc:'.
dst - [required] - The target parent. To use UID references prefix them with 'doc:'.

perms

NAME
perms – Set or view permissions on a document

SYNTAX

perms [options] [doc]

OPTIONS

-grant - If used the ACL will be modified by granting the specified permission on the specified user. The grant value format is
"user:permission".
-deny - If used the ACL will be modified by denying the specified permission on the specified user. The deny value format is
"user:permission".
-remove - [flag] - Remove the given acl.
-acl - The ACL to view or modify. If not specified then in write mode the local ACL is used and in view mode all ACLs are printed.

ARGUMENTS

doc - [optional] -The target document. If not specified the current document is used. To use UID references prefix them with 'doc:'.

popd

NAME
popd – Change the context document and pop the document from the navigation stack.

SYNTAX

popd

publish

NAME
publish – Publish a document into a section

SYNTAX

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

141
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

publish [options] src section

OPTIONS

-override - If set to false will not override an existing published document with same name. The default is "true".

ARGUMENTS

src - [required] - The document to copy. To use UID references prefix them with 'doc:'.
section - [required] - The target parent. To use UID references prefix them with 'doc:'.

pushd

NAME
pushd – Change the context document and push the document on the navigation stack.

SYNTAX

pushd doc

ARGUMENTS

doc - [required] - A reference to the new context document to use. To use UID references prefix them with 'doc:'.

putfile

NAME
putfile – Attach a file to a document

SYNTAX

putfile [options] file [doc]

OPTIONS

-xpath - The XPath of the blob property to set. Defaults to the one used by the File document type.

ARGUMENTS

file - [required] - The file to upload
doc - [optional] -The target document. If not specified the current document is used. To use UID references prefix them with 'doc:'.

pwd

NAME
pwd – Print the current context document

SYNTAX

pwd [options]

OPTIONS

-s - [flag] - Use this flag to show the context documents stack

query

NAME
query – Query documents

SYNTAX

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

142
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

query [options] [query]

OPTIONS

-uid - [flag] - If used the matching documents will be printed using the document UID.

ARGUMENTS

query - [optional] -The document path

EXAMPLES

query "SELECT * FROM Document WHERE ecm:primaryType='Folder'"

query -uid "SELECT * FROM Document WHERE ecm:primaryType=\"Folder\""

rename

NAME
rename – Rename a document

SYNTAX

rename [options] [doc]

OPTIONS

-name - A new name for the document. This parameter is required.

ARGUMENTS

doc - [optional] -The document to rename. To use UID references prefix them with 'doc:'.

rm

NAME
rm – Remove a document

SYNTAX

rm [path]

ARGUMENTS

path - [optional] -The document path. To use UID references prefix them with 'doc:'.

rmfile

NAME
rmfile – Remove an attached file from a document

SYNTAX

rmfile [options] [doc]

OPTIONS

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

143
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

-xpath - The XPath of the blob property to remove. Defaults to the one used by the File document type.

ARGUMENTS

doc - [optional] -The target document. If not specified the current document is used. To use UID references prefix them with 'doc:'.

run

NAME
run – Run a server automation chain that accepts a document or void input

SYNTAX

run [options] chain [doc]

OPTIONS

-s - Use this to change the separator used in context variables. THe default is ','
-ctx - Use this to set execution context variables. Syntax is: k1=v1,k1=v2
-void - [flag] - Use this to avoid having the server sending back the result.

ARGUMENTS

chain - [required] - The chain to run
doc - [optional] -A reference to the new context document to use. To use UID references prefix them with 'doc:'.

runonfile

NAME
runonfile – Run a server automation chain that accepts a file as an input

SYNTAX

runonfile [options] chain file

OPTIONS

-s - Use this to change the separator used in context variables. The default is ','
-ctx - Use this to set execution context variables. Syntax is: k1=v1,k1=v2
-void - [flag] - Use this to avoid having the server sending back the result.

ARGUMENTS

chain - [required] - The chain to run
file - [required] - A reference to the new context document to use. To use UID references prefix them with 'doc:'.

script

NAME
script – Run a script on the server

SYNTAX

script [options] file

OPTIONS

-s - Use this to change the separator used in context variables. The default is ','
-ctx - Use this to set execution context variables. Syntax is: "k1=v1,k1=v2"

ARGUMENTS

file - [required] - The script file. Must have a .mvel or .groovy extension

setp

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

144
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

NAME
setp – Set a property on a document

SYNTAX

setp [options] [doc]

OPTIONS

-value - The property value. If not specified the current property value is removed.
-xpath - The XPath of the property to set. This parameter is required.

ARGUMENTS

doc - [optional] -The target document. If not specified the current document is used. To use UID references prefix them with 'doc:'.

tree

NAME
tree – List a subtree

SYNTAX

tree [doc]

ARGUMENTS

doc - [optional] -A document to list its subtree. If not specified list the current document subtree. To use UID references prefix them with
'doc:'.

unlock

NAME
unlock – Unlock a document

SYNTAX

unlock [doc]

ARGUMENTS

doc - [optional] -The document to unlock. If not specified the current document is used. To use UID references prefix them with 'doc:'.

update

NAME
update – Update document properties

SYNTAX

update [options] [properties] [path]

OPTIONS

-s - Use this to change the separator used in properties. The default is ','

ARGUMENTS

properties - [optional] -The properties to update.
path - [optional] -The document path

Nuxeo Automation Commands

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

145
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

Index:
Audit.Log
Audit.Query
Auth.LoginAs
Auth.Logout
Blob.Attach
Blob.Create
Blob.CreateZip
Blob.Get
Blob.GetList
Blob.Pop
Blob.PopList
Blob.Post
Blob.Pull
Blob.PullList
Blob.Push
Blob.PushList
Blob.Remove
Blob.Set
Blob.SetFilename
Blob.ToFile
Blob.ToPDF
Context.FetchDocument
Context.RestoreBlobInput
Context.RestoreBlobsInput
Context.RestoreDocumentInput
Context.RestoreDocumentsInput
Context.RunDocumentOperation
Context.RunInputScript
Context.RunOperation
Context.RunScript
Context.SetInputAsVar
Context.SetVar
Document.CheckIn
Document.CheckOut
Document.Copy
Document.Create
Document.CreateVersion
Document.Delete
Document.Fetch
Document.FetchByProperty
Document.Filter
Document.GetChild
Document.GetChildren
Document.GetParent
Document.GetPrincipalEmails
Document.GetUsersAndGroups
Document.Lock
Document.Move
Document.MultiPublish
Document.Pop
Document.PopList
Document.Publish
Document.Pull
Document.PullList
Document.Push
Document.PushList
Document.Query
Document.Reload
Document.RemoveACL
Document.RemoveProperty
Document.Save
Document.SaveSession
Document.SetACE
Document.SetLifeCycle
Document.SetProperty
Document.Unlock
Document.Update

Namespace: *automation*
Commands exposed by the Nuxeo Server through automation

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

146
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

Notification.SendEvent
Notification.SendMail
Relations.CreateRelation
Relations.GetRelations
Workflow.CreateTask
Workflow.GetTask
print

Audit.Log

NAME
Audit.Log – Log events into audit for each of the input document. The operation accept as input one ore more documents that are returned back
as the output.

SYNTAX

Audit.Log [options] [the input document(s)]

OPTIONS

-event -
-ctx - Can be used to inject context properties in Java properties format
-category -
-void - [flag] - If void the server will not return the result back
-comment -

ARGUMENTS

the input document(s) - [optional] -null

Audit.Query

NAME
Audit.Query – Execute a JPA query against the Audit Service. This is returning a blob with the query result. The result is a serialized JSON array.
You can use the context to set query variables but you must prefix using 'audit.query.' the context variable keys that match the ones in the query.

SYNTAX

Audit.Query [options]

OPTIONS

-maxResults -
-ctx - Can be used to inject context properties in Java properties format
-void - [flag] - If void the server will not return the result back
-pageNo -
-query -

Auth.LoginAs

NAME
Auth.LoginAs – Login As the given user. If no user is given a system login is performed. This is a void operations - the input will be returned back
as the output.

SYNTAX

Auth.LoginAs [options]

OPTIONS

-ctx - Can be used to inject context properties in Java properties format
-name -
-void - [flag] - If void the server will not return the result back

Auth.Logout

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

147
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

NAME
Auth.Logout – Perform a logout. This should be used only after using the Login As operation to restore original login. This is a void operations -
the input will be returned back as the output.

SYNTAX

Auth.Logout [options]

OPTIONS

-ctx - Can be used to inject context properties in Java properties format
-void - [flag] - If void the server will not return the result back

Blob.Attach

NAME
Blob.Attach – Attach the input file to the document given as a parameter. If the XPath points to a blob list then the blob is appended to the list,
otherwise the XPath should point to a blob property. If the save parameter is set the document modification will be automatically saved. Return
the blob.

SYNTAX

Blob.Attach [options] the input file(s)

OPTIONS

-save -
-ctx - Can be used to inject context properties in Java properties format
-document -
-void - [flag] - If void the server will not return the result back
-xpath -

ARGUMENTS

the input file(s) - [required] - null

Blob.Create

NAME
Blob.Create – Creates a file from a given URL. The file parameter specifies how to retrieve the file content. It should be an URL to the file you
want to use as the source. You can also use an expression to get an URL from the context. Returns the created file.

SYNTAX

Blob.Create [options]

OPTIONS

-mime-type -
-file -
-ctx - Can be used to inject context properties in Java properties format
-filename -
-void - [flag] - If void the server will not return the result back
-encoding -

Blob.CreateZip

NAME
Blob.CreateZip – Creates a zip file from the input file(s). If no file name is given, the first file name in the input will be used. Returns the zip file.

SYNTAX

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

148
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

Blob.CreateZip [options] the input file(s)

OPTIONS

-ctx - Can be used to inject context properties in Java properties format
-filename -
-void - [flag] - If void the server will not return the result back

ARGUMENTS

the input file(s) - [required] - null

Blob.Get

NAME
Blob.Get – Gets a file attached to the input document. The file location is specified using an XPath to the blob property of the document. Returns
the file.

SYNTAX

Blob.Get [options] [the input document(s)]

OPTIONS

-ctx - Can be used to inject context properties in Java properties format
-void - [flag] - If void the server will not return the result back
-xpath -

ARGUMENTS

the input document(s) - [optional] -null

Blob.GetList

NAME
Blob.GetList – Gets a list of files that are attached on the input document. The files location should be specified using the blob list property XPath.
Returns a list of files.

SYNTAX

Blob.GetList [options] [the input document(s)]

OPTIONS

-ctx - Can be used to inject context properties in Java properties format
-void - [flag] - If void the server will not return the result back
-xpath -

ARGUMENTS

the input document(s) - [optional] -null

Blob.Pop

NAME
Blob.Pop – Restore the last saved input file in the context input stack. This operation must be used only if a PUSH operation was previously
made. Return the last file.pushed

SYNTAX

Blob.Pop [options]

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

149
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

OPTIONS

-ctx - Can be used to inject context properties in Java properties format
-void - [flag] - If void the server will not return the result back

Blob.PopList

NAME
Blob.PopList – Restore the last saved input file list in the context input stack

SYNTAX

Blob.PopList [options]

OPTIONS

-ctx - Can be used to inject context properties in Java properties format
-void - [flag] - If void the server will not return the result back

Blob.Post

NAME
Blob.Post – Post the input file to a target HTTP URL. Returns back the input file.

SYNTAX

Blob.Post [options] the input file(s)

OPTIONS

-url -
-ctx - Can be used to inject context properties in Java properties format
-void - [flag] - If void the server will not return the result back

ARGUMENTS

the input file(s) - [required] - null

Blob.Pull

NAME
Blob.Pull – Restore the last saved input file in the context input stack. This operation must be used only if a PUSH operation was previously
made. Return the first file.pushed

SYNTAX

Blob.Pull [options]

OPTIONS

-ctx - Can be used to inject context properties in Java properties format
-void - [flag] - If void the server will not return the result back

Blob.PullList

NAME
Blob.PullList – Restore the first saved input file list in the context input stack

SYNTAX

Blob.PullList [options]

OPTIONS

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

150
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

-ctx - Can be used to inject context properties in Java properties format
-void - [flag] - If void the server will not return the result back

Blob.Push

NAME
Blob.Push – Push the input file on the context stack. The file can be restored later as the input using the corresponding pop operation. Returns
the input file.

SYNTAX

Blob.Push [options] the input file(s)

OPTIONS

-ctx - Can be used to inject context properties in Java properties format
-void - [flag] - If void the server will not return the result back

ARGUMENTS

the input file(s) - [required] - null

Blob.PushList

NAME
Blob.PushList – Push the input file list on the context stack. The file list can be restored later as the input using the corresponding pop operation.
Returns the input file list.

SYNTAX

Blob.PushList [options] the input file(s)

OPTIONS

-ctx - Can be used to inject context properties in Java properties format
-void - [flag] - If void the server will not return the result back

ARGUMENTS

the input file(s) - [required] - null

Blob.Remove

NAME
Blob.Remove – Remove the file attached to the input document as specified by the 'xpath' parameter. If the 'xpath' point to a blob list then the list
will be cleared. If the file to remove is part of a list it will be removed from the list otherwise the 'xpath' should point to a blob property that will be
removed. If the save parameter is set the document modification will be automatically saved. Return the document.

SYNTAX

Blob.Remove [options] [the input document(s)]

OPTIONS

-save -
-ctx - Can be used to inject context properties in Java properties format
-void - [flag] - If void the server will not return the result back
-xpath -

ARGUMENTS

the input document(s) - [optional] -null

Blob.Set

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

151
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

NAME
Blob.Set – Set the input file to the given property on the input document. If the XPath points to a blob list then the blob is appended to the list,
otherwise the XPath should point to a blob property. If the save parameter is set the document modification will be automatically saved. Return
the document.

SYNTAX

Blob.Set [options] [the input document(s)]

OPTIONS

-save -
-file -
-ctx - Can be used to inject context properties in Java properties format
-void - [flag] - If void the server will not return the result back
-xpath -

ARGUMENTS

the input document(s) - [optional] -null

Blob.SetFilename

NAME
Blob.SetFilename – Modify the filename of a file stored in the input document. The file is found in the input document given its XPath specified
through the 'xpath' parameter. Return back the input document.

SYNTAX

Blob.SetFilename [options] [the input document(s)]

OPTIONS

-save -
-ctx - Can be used to inject context properties in Java properties format
-name -
-void - [flag] - If void the server will not return the result back
-xpath -

ARGUMENTS

the input document(s) - [optional] -null

Blob.ToFile

NAME
Blob.ToFile – Save the input blob(s) as a file(s) into the given target directory. The blob(s) filename is used as the file name. You can specify an
optional string to prepend to the file name. Return back the blob(s).prefix

SYNTAX

Blob.ToFile [options] the input file(s)

OPTIONS

-ctx - Can be used to inject context properties in Java properties format
-prefix -
-void - [flag] - If void the server will not return the result back
-directory -

ARGUMENTS

the input file(s) - [required] - null

Blob.ToPDF

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

152
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

NAME
Blob.ToPDF – Convert the input file to a PDF and return the new file.

SYNTAX

Blob.ToPDF [options] the input file(s)

OPTIONS

-ctx - Can be used to inject context properties in Java properties format
-void - [flag] - If void the server will not return the result back

ARGUMENTS

the input file(s) - [required] - null

Context.FetchDocument

NAME
Context.FetchDocument – Fetch the input of the context as a document. The document will become the input for the next operation.

SYNTAX

Context.FetchDocument [options]

OPTIONS

-ctx - Can be used to inject context properties in Java properties format
-void - [flag] - If void the server will not return the result back

Context.RestoreBlobInput

NAME
Context.RestoreBlobInput – Restore the file input from a context variable given its name. Return the file.

SYNTAX

Context.RestoreBlobInput [options]

OPTIONS

-ctx - Can be used to inject context properties in Java properties format
-name -
-void - [flag] - If void the server will not return the result back

Context.RestoreBlobsInput

NAME
Context.RestoreBlobsInput – Restore the file list input from a context variable given its name. Return the files.

SYNTAX

Context.RestoreBlobsInput [options]

OPTIONS

-ctx - Can be used to inject context properties in Java properties format
-name -
-void - [flag] - If void the server will not return the result back

Context.RestoreDocumentInput

NAME

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

153
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

Context.RestoreDocumentInput – Restore the document input from a context variable given its name. Return the document.

SYNTAX

Context.RestoreDocumentInput [options]

OPTIONS

-ctx - Can be used to inject context properties in Java properties format
-name -
-void - [flag] - If void the server will not return the result back

Context.RestoreDocumentsInput

NAME
Context.RestoreDocumentsInput – Restore the document list input from a context variable given its name. Return the document list.

SYNTAX

Context.RestoreDocumentsInput [options]

OPTIONS

-ctx - Can be used to inject context properties in Java properties format
-name -
-void - [flag] - If void the server will not return the result back

Context.RunDocumentOperation

NAME
Context.RunDocumentOperation – Run an operation chain which is returning a document in the current context. The input for the chain ro run is
the current input of the operation. Return the output of the chain as a document.

SYNTAX

Context.RunDocumentOperation [options] [the input document(s)]

OPTIONS

-ctx - Can be used to inject context properties in Java properties format
-void - [flag] - If void the server will not return the result back
-id -

ARGUMENTS

the input document(s) - [optional] -null

Context.RunInputScript

NAME
Context.RunInputScript – Run a script from the input blob. A blob containing script result is returned.

SYNTAX

Context.RunInputScript [options] the input file(s)

OPTIONS

-ctx - Can be used to inject context properties in Java properties format
-void - [flag] - If void the server will not return the result back
-type -

ARGUMENTS

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

154
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

the input file(s) - [required] - null

Context.RunOperation

NAME
Context.RunOperation – Run an operation chain in the current context

SYNTAX

Context.RunOperation [options]

OPTIONS

-ctx - Can be used to inject context properties in Java properties format
-void - [flag] - If void the server will not return the result back
-id -

Context.RunScript

NAME
Context.RunScript – Run a script which content is specified as text in the 'script' parameter

SYNTAX

Context.RunScript [options]

OPTIONS

-ctx - Can be used to inject context properties in Java properties format
-script -
-void - [flag] - If void the server will not return the result back

Context.SetInputAsVar

NAME
Context.SetInputAsVar – Set a context variable that points to the current input object. You must give a name for the variable. This operation works
on any input type and return back the input as the output.

SYNTAX

Context.SetInputAsVar [options]

OPTIONS

-ctx - Can be used to inject context properties in Java properties format
-name -
-void - [flag] - If void the server will not return the result back

Context.SetVar

NAME
Context.SetVar – Set a context variable given a name and the value. To compute the value at runtime from the current context you should use an
EL expression as the value. This operation works on any input type and return back the input as the output.

SYNTAX

Context.SetVar [options]

OPTIONS

-ctx - Can be used to inject context properties in Java properties format
-value -

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

155
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

-name -
-void - [flag] - If void the server will not return the result back

Document.CheckIn

NAME
Document.CheckIn – Checks in the input document. Returns back the document.

SYNTAX

Document.CheckIn [options] [the input document(s)]

OPTIONS

-ctx - Can be used to inject context properties in Java properties format
-version -
-versionVarName -
-void - [flag] - If void the server will not return the result back
-comment -

ARGUMENTS

the input document(s) - [optional] -null

Document.CheckOut

NAME
Document.CheckOut – Checks out the input document. Returns back the document.

SYNTAX

Document.CheckOut [options] [the input document(s)]

OPTIONS

-ctx - Can be used to inject context properties in Java properties format
-void - [flag] - If void the server will not return the result back

ARGUMENTS

the input document(s) - [optional] -null

Document.Copy

NAME
Document.Copy – Copy the input document into the given folder. The name parameter will be used as the copy name otherwise if not specified
the original name will be preserved. The target folder can be specified as an absolute or relative path (relative to the input document) as an UID or
by using an EL expression. Return the newly created document (the copy).

SYNTAX

Document.Copy [options] [the input document(s)]

OPTIONS

-ctx - Can be used to inject context properties in Java properties format
-target -
-name -
-void - [flag] - If void the server will not return the result back

ARGUMENTS

the input document(s) - [optional] -null

Document.Create

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

156
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

NAME
Document.Create – Create a new document in the input folder. You can initialize the document properties using the 'properties' parameter. The
properties are specified as pairs separated by a new line. The key used for a property is the property XPath. To specify multi-linekey=value
values you can use a \ character followed by a new line.
Example:dc:title=The Document Title
dc:description=foo bar
Returns the created document.

SYNTAX

Document.Create [options] [the input document(s)]

OPTIONS

-ctx - Can be used to inject context properties in Java properties format
-properties -
-name -
-void - [flag] - If void the server will not return the result back
-type -

ARGUMENTS

the input document(s) - [optional] -null

Document.CreateVersion

NAME
Document.CreateVersion – Create a new version for the input document. Any modification made on the document by the chain will be
automatically saved. Increment version if this was specified through the 'snapshot' parameter. Returns the live document (not the version).

SYNTAX

Document.CreateVersion [options] [the input document(s)]

OPTIONS

-ctx - Can be used to inject context properties in Java properties format
-increment -
-void - [flag] - If void the server will not return the result back

ARGUMENTS

the input document(s) - [optional] -null

Document.Delete

NAME
Document.Delete – Delete the input document. The previous context input will be restored for the next operation.

SYNTAX

Document.Delete [options] [the input document(s)]

OPTIONS

-ctx - Can be used to inject context properties in Java properties format
-void - [flag] - If void the server will not return the result back

ARGUMENTS

the input document(s) - [optional] -null

Document.Fetch

NAME
Document.Fetch – Fetch a document from the repository given its reference (path or UID). The document will become the input of the next

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

157
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

operation.

SYNTAX

Document.Fetch [options]

OPTIONS

-ctx - Can be used to inject context properties in Java properties format
-value -
-void - [flag] - If void the server will not return the result back

Document.FetchByProperty

NAME
Document.FetchByProperty – For each specified string property value, fetch all documents that match the property and the optional where clause.
Matching documents are collected into a list and the returned to the next operation. The operation has no input.

SYNTAX

Document.FetchByProperty [options]

OPTIONS

-values -
-ctx - Can be used to inject context properties in Java properties format
-property -
-void - [flag] - If void the server will not return the result back
-query -

Document.Filter

NAME
Document.Filter – Filter the input list of documents given a condition. The condition can be expressed using 4 parameters: types, facets, lifecycle
and condition. If more than one parameter is specified an AND will be used to group conditions.
The 'types' parameter can take a comma separated list of document type: File,Note.
The 'facet' parameter can take a single facet name.
The 'life cycle' parameter takes a name of a life cycle state the document should have.
The 'condition' parameter can take any EL expression.
Returns the list of documents that match the filter condition.

SYNTAX

Document.Filter [options] [the input document(s)]

OPTIONS

-class -
-types -
-pathStartsWith -
-ctx - Can be used to inject context properties in Java properties format
-facet -
-void - [flag] - If void the server will not return the result back
-lifecycle -
-condition -

ARGUMENTS

the input document(s) - [optional] -null

Document.GetChild

NAME
Document.GetChild – Get a child document given its name. Take as input the parent document and return the child document.

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

158
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

SYNTAX

Document.GetChild [options] [the input document(s)]

OPTIONS

-ctx - Can be used to inject context properties in Java properties format
-name -
-void - [flag] - If void the server will not return the result back

ARGUMENTS

the input document(s) - [optional] -null

Document.GetChildren

NAME
Document.GetChildren – Get the children of a document. The list of children will become the input for the next operation

SYNTAX

Document.GetChildren [options] [the input document(s)]

OPTIONS

-ctx - Can be used to inject context properties in Java properties format
-void - [flag] - If void the server will not return the result back

ARGUMENTS

the input document(s) - [optional] -null

Document.GetParent

NAME
Document.GetParent – Get the parent document of the input document. The parent document will become the input for the next operation. You
can use the 'type' parameter to specify which parent to select from the document ancestors

SYNTAX

Document.GetParent [options] [the input document(s)]

OPTIONS

-ctx - Can be used to inject context properties in Java properties format
-void - [flag] - If void the server will not return the result back
-type -

ARGUMENTS

the input document(s) - [optional] -null

Document.GetPrincipalEmails

NAME
Document.GetPrincipalEmails – Fetch the principal emails that have a given permission on the input document and then set them in the context
under the given key variable name. The operation returns the input document. You can later use the list of principals set by this operation on the
context from another operation. The 'key' argument represents the variable name and the 'permission' argument the permission to check. If the
'ignore groups' argument is false then groups are recursively resolved, extracting user members of these groups. Be that this may be awarned
very consuming operation.
Note that:

groups are not included,
the list pushed into the context is a string list of emails.

SYNTAX

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

159
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

Document.GetPrincipalEmails [options] [the input document(s)]

OPTIONS

-ctx - Can be used to inject context properties in Java properties format
-ignore groups -
-variable name -
-void - [flag] - If void the server will not return the result back
-permission -

ARGUMENTS

the input document(s) - [optional] -null

Document.GetUsersAndGroups

NAME
Document.GetUsersAndGroups – Fetch the users and groups that have a given permission on the input document and then set them in the
context under the given key variable name. The operation returns the input document. You can later use the list of identifiers set by this operation
on the context from another operation. The 'key' argument represents the variable name and the 'permission' argument the permission to check. If
the 'ignore groups' argument is false then groups will be part of the result. If the 'resolve groups' argument is true then groups are recursively
resolved, adding user members of these groups in place of them. Be that this may be a very consuming operation. If the 'prefix identifiers'warned
argument is true, then user identifiers are prefixed by 'user:' and groups identifiers are prefixed by 'group:'.

SYNTAX

Document.GetUsersAndGroups [options] [the input document(s)]

OPTIONS

-ctx - Can be used to inject context properties in Java properties format
-ignore groups -
-resolve groups -
-variable name -
-void - [flag] - If void the server will not return the result back
-permission -
-prefix identifiers -

ARGUMENTS

the input document(s) - [optional] -null

Document.Lock

NAME
Document.Lock – Lock the input document in the name of the given 'owner'. The lock owner is an username and identifies the user that owns the
lock on the document. If the owner is not specified, the current user will be used as the owner. Returns back the locked document.

SYNTAX

Document.Lock [options] [the input document(s)]

OPTIONS

-ctx - Can be used to inject context properties in Java properties format
-owner -
-void - [flag] - If void the server will not return the result back

ARGUMENTS

the input document(s) - [optional] -null

Document.Move

NAME

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

160
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

Document.Move – Move the input document into the target folder.

SYNTAX

Document.Move [options] [the input document(s)]

OPTIONS

-ctx - Can be used to inject context properties in Java properties format
-target -
-name -
-void - [flag] - If void the server will not return the result back

ARGUMENTS

the input document(s) - [optional] -null

Document.MultiPublish

NAME
Document.MultiPublish – Publish the input document(s) into several target sections. The target is evaluated to a document list (can be a path, UID
or EL expression). Existing proxy is overridden if the override attribute is set. Returns a list with the created proxies.

SYNTAX

Document.MultiPublish [options] [the input document(s)]

OPTIONS

-ctx - Can be used to inject context properties in Java properties format
-target -
-void - [flag] - If void the server will not return the result back
-override -

ARGUMENTS

the input document(s) - [optional] -null

Document.Pop

NAME
Document.Pop – Restore the last saved input document in the context input stack. This operation must be used only if a PUSH operation was
previously made. Return the last document.pushed

SYNTAX

Document.Pop [options]

OPTIONS

-ctx - Can be used to inject context properties in Java properties format
-void - [flag] - If void the server will not return the result back

Document.PopList

NAME
Document.PopList – Restore the last saved input document list in the context input stack

SYNTAX

Document.PopList [options]

OPTIONS

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

161
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

-ctx - Can be used to inject context properties in Java properties format
-void - [flag] - If void the server will not return the result back

Document.Publish

NAME
Document.Publish – Publish the input document into the target section. Existing proxy is overridden if the override attribute is set. Return the
created proxy.

SYNTAX

Document.Publish [options] [the input document(s)]

OPTIONS

-ctx - Can be used to inject context properties in Java properties format
-target -
-void - [flag] - If void the server will not return the result back
-override -

ARGUMENTS

the input document(s) - [optional] -null

Document.Pull

NAME
Document.Pull – Restore the first saved input document in the context input stack. This operation must be used only if a PUSH operation was
previously made. Return the first document.pushed

SYNTAX

Document.Pull [options]

OPTIONS

-ctx - Can be used to inject context properties in Java properties format
-void - [flag] - If void the server will not return the result back

Document.PullList

NAME
Document.PullList – Restore the first saved input document list in the context input stack

SYNTAX

Document.PullList [options]

OPTIONS

-ctx - Can be used to inject context properties in Java properties format
-void - [flag] - If void the server will not return the result back

Document.Push

NAME
Document.Push – Push the input document on the context stack. The document can be restored later as the input using the corresponding pop
operation. Returns the input document.

SYNTAX

Document.Push [options] [the input document(s)]

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

162
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

OPTIONS

-ctx - Can be used to inject context properties in Java properties format
-void - [flag] - If void the server will not return the result back

ARGUMENTS

the input document(s) - [optional] -null

Document.PushList

NAME
Document.PushList – Push the input document list on the context stack. The document list can be restored later as the input using the
corresponding pop operation. Returns the input document list.

SYNTAX

Document.PushList [options] [the input document(s)]

OPTIONS

-ctx - Can be used to inject context properties in Java properties format
-void - [flag] - If void the server will not return the result back

ARGUMENTS

the input document(s) - [optional] -null

Document.Query

NAME
Document.Query – Perform a query on the repository. The query result will become the input for the next operation.

SYNTAX

Document.Query [options]

OPTIONS

-ctx - Can be used to inject context properties in Java properties format
-language -
-void - [flag] - If void the server will not return the result back
-query -

Document.Reload

NAME
Document.Reload – Reload the input document from the repository. Any previous modification made by the chain on this document will be lost if
these modifications were not saved. Return the reloaded document.

SYNTAX

Document.Reload [options] [the input document(s)]

OPTIONS

-ctx - Can be used to inject context properties in Java properties format
-void - [flag] - If void the server will not return the result back

ARGUMENTS

the input document(s) - [optional] -null

Document.RemoveACL

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

163
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

NAME
Document.RemoveACL – Remove a named Access Control List from the input document(s). Returns the document(s).

SYNTAX

Document.RemoveACL [options] [the input document(s)]

OPTIONS

-ctx - Can be used to inject context properties in Java properties format
-void - [flag] - If void the server will not return the result back
-acl -

ARGUMENTS

the input document(s) - [optional] -null

Document.RemoveProperty

NAME
Document.RemoveProperty – Remove the given property of the input document(s) as specified by the 'xpath' parameter. If the property points to
a list then clear the list. Removing a property means setting it to null. Return the document(s).

SYNTAX

Document.RemoveProperty [options] [the input document(s)]

OPTIONS

-save -
-ctx - Can be used to inject context properties in Java properties format
-void - [flag] - If void the server will not return the result back
-xpath -

ARGUMENTS

the input document(s) - [optional] -null

Document.Save

NAME
Document.Save – Save in the repository any modification that was done on the input document. Returns the saved document.

SYNTAX

Document.Save [options] [the input document(s)]

OPTIONS

-ctx - Can be used to inject context properties in Java properties format
-void - [flag] - If void the server will not return the result back

ARGUMENTS

the input document(s) - [optional] -null

Document.SaveSession

NAME
Document.SaveSession – Commit any changes made by the operation on the documents. This can be used to explicitly commit changes. This
operation can be executed on any type of input. The input of this operation will be preserved as the input for the next operation in the chain.

SYNTAX

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

164
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

Document.SaveSession [options]

OPTIONS

-ctx - Can be used to inject context properties in Java properties format
-void - [flag] - If void the server will not return the result back

Document.SetACE

NAME
Document.SetACE – Set Access Control Entry on the input document(s). Returns the document(s).

SYNTAX

Document.SetACE [options] [the input document(s)]

OPTIONS

-ctx - Can be used to inject context properties in Java properties format
-grant -
-overwrite -
-void - [flag] - If void the server will not return the result back
-user -
-acl -
-permission -

ARGUMENTS

the input document(s) - [optional] -null

Document.SetLifeCycle

NAME
Document.SetLifeCycle – Follow the given transition on the input document life cycle state

SYNTAX

Document.SetLifeCycle [options] [the input document(s)]

OPTIONS

-ctx - Can be used to inject context properties in Java properties format
-value -
-void - [flag] - If void the server will not return the result back

ARGUMENTS

the input document(s) - [optional] -null

Document.SetProperty

NAME
Document.SetProperty – Set a single property value on the input document. The property is specified using its XPath. The document is
automatically saved if 'save' parameter is true. If you unset the 'save' you need to save it later using Save Document operation. Return the
modified document.

SYNTAX

Document.SetProperty [options] [the input document(s)]

OPTIONS

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

165
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

-save -
-ctx - Can be used to inject context properties in Java properties format
-value -
-void - [flag] - If void the server will not return the result back
-xpath -

ARGUMENTS

the input document(s) - [optional] -null

Document.Unlock

NAME
Document.Unlock – Unlock the input document. The unlock will be executed in the name of the current user. An user can unlock a document only
if has the UNLOCK permission granted on the document or if it the same user as the one that locked the document. Return the unlocked
document

SYNTAX

Document.Unlock [options] [the input document(s)]

OPTIONS

-ctx - Can be used to inject context properties in Java properties format
-void - [flag] - If void the server will not return the result back

ARGUMENTS

the input document(s) - [optional] -null

Document.Update

NAME
Document.Update – Set multiple properties on the input document. The properties are specified as pairs separated by a new line. Thekey=value
key used for a property is the property XPath. To specify multi-line values you can use a \ character followed by a new line.
Example:
dc:title=The Document Title
dc:description=foo bar
Returns back the updated document.

SYNTAX

Document.Update [options] [the input document(s)]

OPTIONS

-save -
-ctx - Can be used to inject context properties in Java properties format
-properties -
-void - [flag] - If void the server will not return the result back

ARGUMENTS

the input document(s) - [optional] -null

Notification.SendEvent

NAME
Notification.SendEvent – Send a Nuxeo event.

SYNTAX

Notification.SendEvent [options]

OPTIONS

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

166
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

-ctx - Can be used to inject context properties in Java properties format
-name -
-void - [flag] - If void the server will not return the result back

Notification.SendMail

NAME
Notification.SendMail – Send an email using the input document to the specified recipients. You can use the asHTML parameter to specify
whether you message is in HTML format or in plain text. Also you can attach any blob on the current document to the message by using the
comma separated list of XPath expressions 'files'. If your XPath points to a blob list all blobs in the list will be attached. Return back the input
document(s).

SYNTAX

Notification.SendMail [options] [the input document(s)]

OPTIONS

-viewId -
-message -
-ctx - Can be used to inject context properties in Java properties format
-from -
-files -
-void - [flag] - If void the server will not return the result back
-to -
-subject -
-asHTML -

ARGUMENTS

the input document(s) - [optional] -null

Relations.CreateRelation

NAME
Relations.CreateRelation – Create a relation between 2 documents. The subject of the relation will be the input of the operation and the object of
the relation will be retrieved from the context using the 'object' field. The 'predicate' field specify the relation predicate. Return back the subject
document.

SYNTAX

Relations.CreateRelation [options] [the input document(s)]

OPTIONS

-object -
-ctx - Can be used to inject context properties in Java properties format
-predicate -
-void - [flag] - If void the server will not return the result back

ARGUMENTS

the input document(s) - [optional] -null

Relations.GetRelations

NAME
Relations.GetRelations – Get the relations for the input document. The 'outgoing' parameter ca be used to specify whether outgoing or incoming
relations should be returned. Returns a document list.

SYNTAX

Relations.GetRelations [options] [the input document(s)]

OPTIONS

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

167
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

-ctx - Can be used to inject context properties in Java properties format
-predicate -
-void - [flag] - If void the server will not return the result back
-outgoing -

ARGUMENTS

the input document(s) - [optional] -null

Workflow.CreateTask

NAME
Workflow.CreateTask – Enable to create a task bound to the document.

, and will be displayed in the task list of the user. In and fields, youDirective comment due date accept operation chain reject operation chain
can put the operation chain ID of your choice among the one you contributed. Those operations will be executed when the user validates the task,
depending on whether he accepts or rejects the task. You have to specify a variable name (the parameter) to resolve target users andkey for ...
groups to which the task will be assigned. You can use Get Users and Groups to update a context variable with some users and groups. If you
check , each of the actors will have a task to achieve, versus "the first who achieve the task makes it disappear for thecreate one task per actor
others".

SYNTAX

Workflow.CreateTask [options] [the input document(s)]

OPTIONS

-variable name for actors prefixed ids -
-reject operation chain -
-ctx - Can be used to inject context properties in Java properties format
-directive -
-create one task per actor -
-accept operation chain -
-additional list of actors prefixed ids -
-due date -
-void - [flag] - If void the server will not return the result back
-comment -
-task name -

ARGUMENTS

the input document(s) - [optional] -null

Workflow.GetTask

NAME
Workflow.GetTask – List tasks assigned to this user or one of its group.Task properties are serialized using JSON and returned in a Blob.

SYNTAX

Workflow.GetTask [options]

OPTIONS

-ctx - Can be used to inject context properties in Java properties format
-void - [flag] - If void the server will not return the result back

print

NAME
print – Print operation(s) definition

SYNTAX

print [options] [operation]

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

168
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

OPTIONS

-p - The password if any.
-u - The username if any.
-out - An optional file to save the operation definition into. If not used the definition will be printed on stdout.

ARGUMENTS

operation - [optional] -The operation to print.

Configuration Commands

Index:
background
color
font
settings
theme

background

NAME
background – Modify the background color used by the shell. This command is available only in UI mode.

SYNTAX

background

color

NAME
color – Modify the foreground color used by the shell. This command is available only in UI mode.

SYNTAX

color

font

NAME
font – Modify the font used by the shell. This command is available only in UI mode.

SYNTAX

font

settings

NAME
settings – Print or modify the shell settings.

SYNTAX

settings [options] [name] [value]

OPTIONS

-reset - [flag] - Reset settings to their defaults. Need to restart shell.

Namespace: *config*
Commands for configuring the shell.

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

169
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

1.
2.
3.

ARGUMENTS

name - [optional] -The variable to print or set.
value - [optional] -The variable value to set.

theme

NAME
theme – Modify the theme used by the shell. This command is available only in UI mode.

SYNTAX

theme [name]

ARGUMENTS

name - [optional] -The theme name to set. If not specified the current theme is printed.

Shell Batch Mode

As I said in the overview section there are three modes to execute batch commands:

Run commands from a file
Run commands from standard input.
Run commands specified on the command line - this is a convenient way to run a short list of commands.

Running Commands From a File

To run commands from a file you should use the parameter to specify a file containing commands when launching Nuxeo Shell.-f

Example:

java -cp nuxeo-shell.jar org.nuxeo.shell.Main -f my_batch_file

Where is a file containing the commands to execute - each command on one line. Empty lines and lines beginning with aremy_batch_file #
ignored. The character can be use to add comments to a batch file.#

Here is an example of a batch file:

connect to local server using the Administrator account.
connect -u Administrator -p Administrator http://localhost:8080/nuxeo/site/automation

we are now in the repository root. Go to /default-domain/workspaces
cd /default-domain/workspaces

list the content of the workspaces root - as document UIDs
ls -uid

If you want to span a command on multiple lines (you may want this for improved readability in case of long commands) you can end the line with
a you don't have a space after **). In that case the command will continue on the next line, and so on until no more line* character (*make sure
ending ** is found or the end of file is reached.

Example:

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

170
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

1.
2.

connect to local server using the Administrator account.
connect -u Administrator -p Administrator http://localhost:8080/nuxeo/site/automation

get all workspaces in the repository
query "SELECT * FROM Document WHERE ecm:primaryType='Workspace' \
 ORDER BY dc:title DESC"

Running Commands From Standard Input

If you want to run batch commands from the terminal standard input you can use the option when launching the Nuxeo shell.-
The format of the commands is the same as the one described when running commands from a file.

Here is an example which will run the commands from my_batch_file file by using the Unix application and pipes:cat

cat my_batch_file | java -cp nuxeo-shell.jar org.nuxeo.shell.Main -

Running Batch Commands from the Command Line

If you just run a few short commands you can specify them directly in the command line of the Nuxeo Shell.

Example:

java -cp nuxeo-shell.jar org.nuxeo.shell.Main -e "connect -u Administrator -p
Administrator http://localhost:8080/nuxeo/site/automation; ls"

Note that commands are separated using a semicolon character.

Backup and restore

Backup

Nuxeo supports hot backup of your data.

If you have followed the recommendations, then you have configured Nuxeo to use a "true" database (instead of the default Derby) and have set
a path for in your . In that case:nuxeo.data.dir nuxeo.conf

simply first backup your database (make a SQL dump),
then backup your data on filesystem.

Performing the backup in that order (the database first, then the filesystem) will ensure backup consistency ().more details

If you didn't configure Nuxeo to use a database, then the default database is embedded in the data directory but you will have to stop the server
before backup.

If you didn't configure Nuxeo data directory (in), then you have to find the default path which depends on thenuxeo.data.dir nuxeo.conf
server (Tomcat/JBoss) and the Nuxeo version (look at the data directory value in the Admin Center).
For Tomcat, it should be . For JBoss, it should be .$TOMCAT/nxserver/data $JBOSS/server/default/data

Restore

Restore the database and data filesystem you had previously backup.

Configure Nuxeo to use those database and data directory. Start Nuxeo.

Limitations
You cannot run that way commands that contains illegal characters and needs to be escaped.

http://doc.nuxeo.com/x/GATF
https://doc.nuxeo.com/pages/createpage.action?spaceKey=KB&title=Backup+your+Nuxeo+using+VCS
https://doc.nuxeo.com/pages/createpage.action?spaceKey=NXDOC&title=Setup

 Nuxeo Enterprise Platform 5.4 Documentation

171
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

Import a file system

Multi threaded document importer from server file system

Build/install

From Nuxeo Marketplace

The Bulk document importer v. 1.0.0 is available from .the Nuxeo Marketplace

By hand

Its source code lives at https://hg.nuxeo.org/addons/nuxeo-platform-importer

Build with: mvn package -Dmaven.test.skip=true

And deploy the two jars from the target subfolder into the or folder of your nuxeo server (andnuxeo.ear/plugins nxserver/bundles
restart).

Usage

The file importer comes as a Java library (with nuxeo runtime service) and a sample JAX-RS interface to launch, monitor and abort import jobs.

To import the folder '/home/ogrisel/Documents' into the workspace while monitoring the/default-domain/workspaces/my-workspace
import logs from a REST client use the following HTTP GET queries:

GET http://localhost:8080/nuxeo/site/fileImporter/logActivate

GET
http://localhost:8080/nuxeo/site/fileImporter/run?targetPath=/default-domain/workspace
s/my-workspace&inputPath=/home/ogrisel/Documents&batchSize=10&interactive=false&nbThre
ads=4

GET http://localhost:8080/nuxeo/site/fileImporter/log

To execute those HTTP queries you can either use a browser with an active Nuxeo session (JSESSIONID cookie) or use a third party stateless
HTTP client with HTTP Basic Authentication, eg with the curl command line client:

curl --basic -u 'Administrator:Administrator'
"http://localhost:8080/nuxeo/site/fileImporter/log"

Don't forget to quote the URL if it includes special shell characters such as '&'.

You can also use the generic HTTP GUI client from .the rest-client java project

Don't forget to fill in the 'Auth' tab with your user credentials.

For developers

If you want to programmatically reuse or extend multi-threaded import on a Nuxeo repository, look at .Nuxeo Bulk Document Importer

Upgrading your Nuxeo Version
Each version of Nuxeo comes with bug fixes, new features and improvements.

This means upgrading to the latest public release is a smart move.

In order to make upgrade easy we are very careful not to break anything.

Remember that we provide support and use Nuxeo EP in a lot of project, so if we break something, we have to fix it :)

So basically:

we don't break the APIs between two versions: we add new APIs and deprecate old ones,

http://doc.nuxeo.com/x/GATF
https://connect.nuxeo.com/nuxeo/site/marketplace/package/nuxeo-platform-importer-1.0.0
http://marketplace.nuxeo.com/
https://hg.nuxeo.org/addons/nuxeo-platform-importer
http://code.google.com/p/rest-client/
https://doc.nuxeo.com/display/NXDOC/Nuxeo+Bulk+Document+Importer

 Nuxeo Enterprise Platform 5.4 Documentation

172
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

there are several minor versions between the deprecation and the removal so you have time to adapt your code,
if we completely replace a service (that was the case of SearchService and EventService for example), we provide compatibility
packages so you can continue using the old API (even if migrating to the new API is highly recommended).

In terms of Data Migration we are also very careful not to break anything.
Once again, we run Nuxeo EP for a lot of our internal needs and we upgrade them very frequently and don't want to have data migration issue.

Anyway, when some changes or optimizations impact the storage layer we either:

make the upgrade automatically,
or provide guidelines for the upgrade.

Upgrading is usually a simple and painless process.
Using the template system also allows to easily transpose your configuration from one version to an other.

In the worse cases, in case of problem, Nuxeo Support is there to help you

For upgrade steps, here are the upgrade procedures per Nuxeo version:

Upgrade to 5.4.2 with Oracle
Upgrade from 5.3.2 to 5.4.0
Upgrade from 5.3.1 to 5.3.2
Upgrade from 5.3.1 with MySQL to 5.3.2
Upgrade from 5.3.0 to 5.3.1
Upgrade from 5.1.6 with JCR + PostgreSQL to 5.2.0
Upgrade from 5.1.2 to 5.1.3

Upgrade to 5.4.2 with Oracle

If you were using Nuxeo DM 5.3.2 or later with Oracle and ACL optimizations enabled, you need to update an index before plugging your
database to Nuxeo DM 5.4.2.

SELECT index_name FROM USER_INDEXES WHERE table_name LIKE 'READ_ACLS';

Get the index name, result of the previous query, which should look like "SYS_C00XXXX"

Then run the following statement:

ALTER INDEX "SYS_C00XXXX" RENAME TO "ACLR_ACL_ID_IDX";

Now you can start Nuxeo DM 5.4.2 which will rename the table READ_ACLS to ACLR and the previous index will be ready to work with this new
configuration.

Upgrade from 5.3.2 to 5.4.0

Installation & Configuration

While Nuxeo EP 5.3.2 was based on the JBoss distribution, Nuxeo EP 5.4.0 is based on Tomcat. There is also a distribution based on JBoss
5, though we strongly recommend you to use the Tomcat distribution: .http://cdn.nuxeo.com/nuxeo-5.4.0/nuxeo-dm-5.4.0_01-tomcat.zip

JBoss 5

If using the JBoss distribution, see .Upgrade to 5.4 and JBoss 5

Data Migration

On JBoss, data used to be in , where you can find the folder. Now, with$NUXEO_HOME/server/default/data/NXRuntime/ binaries
the Tomcat distribution, it stands in .$NUXEO_HOME/nxserver/data

If you have moved your data outside Nuxeo using the , , you need to move the binaries foldernuxeo.data.dir as recommended
one level up and then remove the folder.NXRuntime
If you haven't moved you data outside Nuxeo, you need to move the folder from binaries $NUXEO_HOME/server/default/dat

 to .a/NXRuntime/ $NUXEO_HOME/nxserver/data

Code Migration

http://doc.nuxeo.com/x/GATF
http://cdn.nuxeo.com/nuxeo-5.4.0/nuxeo-dm-5.4.0_01-tomcat.zip

 Nuxeo Enterprise Platform 5.4 Documentation

173
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

Workflow

The workflow implementation has changed, see .From the old workflow system to the new 5.4 workflow system

In this section
Installation &
Configuration

JBoss 5
Data Migration
Code Migration

Workflow

From the old workflow system to the new 5.4 workflow system

Even though the 5.4 jBPM service doesn't implement backward compatibility with the old workflow service, is it possible to deploy both the old
workflow framework AND the jBPM service so that the migration can be gradual?

It should be possible to use the m3 version of jBPM and still run the new workflow.
If you create an action for the new workflow tab different from the one for the old workflow, you could use both at the same time. (I assume you
are not using publishing tab and forum).

However, I think it would be much easier to move your old workflow to the new one. That would be:

create the new workflow with handler,
define what variable you need in the new workflow (most probably docId, repo name),
get the variable from the unfinished process instance in the old jBPM table (object are just serialized into it).

See for technical details.NXP-2850

Upgrade from 5.3.2 to 5.4.0 with JBoss 5
During the migration from JBoss 4.2 to 5.1 we had to do some small changes in Nuxeo bundles.

You will have to do the same for your custom bundles.

Nevertheless, the needed changes are very small and it should only take a few minutes (it should be really quick when you don't have 200
bundles and you know what to do).

Impact on sources and resources

Web resources

Bundles contribution resources to the WAR used to have these resources stored in: .src/main/resources/nuxeo.war

This does break JBoss 5 deployment, because it tries to deploy the as a nested WAR, but it fails (because the WAR is notnuxeo.war
complete and because there are several bundles containing the same).nuxeo.war

Rather than changing JBoss deployer config we chose to change our packaging to avoid the problem.

The solution is simple: tree should not be at root of the JAR.nuxeo.war

Sample directory structure:

Before (Jboss 4.2) After (Jboss 5.1)

.
 `-- src

 `-- main
 |-- java

 `-- resources
 |-- META-INF
 |-- nuxeo.war

 | `-- my_page.xhtml
`-- OSGI-INF

.
`-- src
`-- main
|-- java
`-- resources
|-- META-INF
|-- OSGI-INF

 `-- web
`-- nuxeo.war
`-- my_page.xhtml

This implies a small change in the deployment-fragment:

Before (Jboss 4.2) After (Jboss 5.1)

http://doc.nuxeo.com/x/GATF
https://jira.nuxeo.com/browse/NXP-2850

 Nuxeo Enterprise Platform 5.4 Documentation

174
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

<install>
 <unzip from="${bundle.fileName}"
to="/" >
 <include>nuxeo.war/**</include>
 </unzip>
 </install>

<install>
 <unzip from="${bundle.fileName}"
to="/" prefix="web">
 <include>web/nuxeo.war/**</include
>
 </unzip>
 </install>

If this is not done, or if there is still a "nuxeo.war" directory present in your jar, you will get an exception like:

DEPLOYMENTS IN ERROR:
 Deployment "vfsfile:/opt/jboss/server/default/deploy/nuxeo.ear/" is in error due
to the following reason(s):
java.lang.IllegalStateException: jboss.web.deployment:war=/nuxeo is already
installed.

Module declaration

From within the deployment fragment you can declare contributions to the application.xml.
Be sure that if you declare your module as a EJB module it does really contains EJB3.

<extension target="application#MODULE">
 <module>
 <ejb>${bundle.fileName}</ejb>
 </module>
 </extension>

Otherwise, you should remove the contribution to (the Java declaration is not needed and will in fact be ignored by theapplication.xml
pre-deployer).

Typical deprecated contribution:

<extension target="application#MODULE">
 <module>
 <java>${bundle.fileName}</java>
 </module>
 </extension>

Web services binding

The previous versions of Nuxeo were using SUN-JAX-WS (Metro) to handle WebService deployment.
In order to avoid having to modify default JBoss 5.1/EAP 5.0.1 config, we now support to deploy on JBoss native stack (JBoss WS).

This involves doing some small changes in the way the WebService are implemented and deployed.

No more EJB3

Because of some limitation of the JBossWS EJB3 deployer we can not deploy WebServices on top of EJB3 if we want to keep endpoint URLs
consistent.
So this simply means you should remove the @Stateless annotation in the Beans providing WebService.

Before (Jboss 4.2) After (Jboss 5)

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

175
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

@Local(WSAuditLocal.class)
@Stateless
@Remote(WSAudit.class)
@WebService(name = "WSAuditInterface", serviceName =
"WSAuditService")
@SOAPBinding(style = Style.DOCUMENT)
public class WSAuditBean extends AbstractNuxeoWebService
implements

@Local(WSAuditLocal.class)
@Remote(WSAudit.class)
@WebService(name = "WSAuditInterface", serviceName =
"WSAuditService")
@SOAPBinding(style = Style.DOCUMENT)
public class WSAuditBean extends AbstractNuxeoWebService
implements

SUN-JAX-WS vs JBossWS binding

Both WS framework need to have a declaration for endpoints, but they (of course) don't use the same way to do it.
Basically, SUN-JAX-WS uses a dedicated file and JBossWS uses the .sun-jax-ws.xml web.xml

The Nuxeo template system are configured so that you can declare both bindings in your bundle and Nuxeo will deploy the right one
depending on the target deployment host.

JBossWS binding SUN-JAX-WS binding

<!- JBossWS Native EndPoint Declaration ->
<extension target="web#JBOSSWS">
<servlet>
<description>NuxeoAudit WS EndPoint</description>

<display-name>NuxeoAudit EndPoint</display-name>
<servlet-name>NuxeoAuditEndPoint</servlet-name>
<servlet-class>org.nuxeo.ecm.platform.audit.ws.WS
AuditBean</servlet-class>
</servlet>
<servlet-mapping>
<servlet-name>NuxeoAuditEndPoint</servlet-name>
<url-pattern>/webservices/nuxeoaudit</url-pattern
>
</servlet-mapping>

 </extension>
NB: Yes, you declare you Bean as a servlet even if it does not
implement the needed interface!

<! > - SUN JAXWS / Metro EndPoint Declaration -
<extension target="jaxws#ENDPOINT">
<endpoint name="nuxeoaudit"
implementation="org.nuxeo.ecm.platform.audit.ws.W
SAuditBean"
url-pattern="/webservices/nuxeoaudit" />
</extension>

Requirements declaration

In JBoss deployed, as it was already the case for tomcat deployment, the Require-Bundle is no longer used by the deployed and should be
reserved for OSGi deployment.

The Nuxeo-Require should not longer be used either. will be deprecated but should still be use to override XHTMLNuxeo-RequiredBy
pages.

In the JBoss 5 deployment (as it was the case in Tomcat), all the Nuxeo bundles are put in the classloader from the start, so there is no risk of
ClassNotFound during the loading.

The only dependencies you have to worry about are Runtime dependencies (server availability, contribution override ...): all this should be
managed by using the tag in the XML contribution.<require>

NB: the is still used when Nuxeo is deployed on an OSGi container, because in this case the class loading issuesRequire-Bundle
remains.

Other checks you may want to do

ejb-jar.xml files

Unless you know what you are doing, you should remove any file from the META-INF folder.ejb-jar.xml

Servlets and filters initialization

Servlets and Filters should not assume that when activated (call to init method by the servlet container) Nuxeo Runtime is ready. It won't be
always the case.

So if you need to do some Nuxeo Runtime calls at init time, you should rely on the Framework initialization event, rather on the servlet
container init.

EJB3 declaration

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

176
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

JBoss 5 is more strict on the JEE spec, so your EJB3 can not use the same Java interface for @Local and @Remote

Web.xml ordering

JBoss 5 validate the against the DTD and checks order on the tags.web.xml

The Nuxeo template is OK and respect the standard, so if you contribute your filters in the rights section and the servlets in the right sections
there should be no problem.

But be aware that if you took some shortcuts and contributed several kind of objects (Filters, Servlets, Context-params) in side the same slot,
it may have worked OK with JBoss 4 but it won't with JBoss 5.

CoreSession usage

In JBoss environment, CoreSession is delivred via DocumentManagerBean that is a Stateful Session Bean.

JEE spec does not allow concurrent calls on a SFSB : this applies to both JBoss 4 and JBoss 5.

But in the case of JBoss 5 the check is more strict and also prohibits reentrant calls from the same thread.

The typical use case if you create a DocumenModel and you have a Listener that will run and use the core session to do some work.

In JBoss 4 it runs without problem but in JBoss 5 this is detected as a concurrent call.

DocumentManagerBean and DocumentModel implementations have been modified to avoid that, but there are still cases where you may
have the problem.

Typical unsafe code is taking the CoreSession via:

CoreInstance.getInstance().getSession(doc.getSessionId()).

This can be replaced by

doc.getCoreSession()

that contains the needed logic to detect the reentrant call and return the correct Session (Local or EJB) depending on the context.

So if you have errors like this one:

no concurrent calls on stateful bean
'jboss.j2ee:service=EJB3,name=DocumentManagerBean' (EJB3 4.3.13)

first check that you don't access the CoreSession from inside a Listener using the DocumentModel sessionId.

Dependencies

Hibernate dependencies in Nuxeo's root has changed. The core artifact for Hibernate is named now instead of pom.xml hibernate-core
. If you were using this dependency, you need to change from:hibernate

<dependency>
 <groupId>org.hibernate</groupId>
 <artifactId>hibernate</artifactId>
</dependency>

to:

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

177
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

<dependency>
 <groupId>org.hibernate</groupId>
 <artifactId>hibernate-core</artifactId>
</dependency>

Impact on the Packaging

Templates

Following structure changes in , templates structure has changed a little.nuxeo.ear

If you override a template, check the directories. For instance, here are the template changes:default

Before (Jboss 4.2) After (Jboss 5.1)

.
|-- config
| |-- default-repository-config.xml
| `-- sql.properties
|-- datasources
| |-- default-repository-ds.xml
| `-- unified-nuxeo-ds.xml
`-- nuxeo.defaults

.
|-- nuxeo-ds.xml
|-- nuxeo.defaults
`-- nuxeo.ear
|-- META-INF
| `-- default-repository-ds.xml
`-- config
|-- default-repository-config.xml
`-- sql.properties

As defined in (" "), the target directory of this template is now nuxeo.defaults default.target=server/default/deploy server/de
 instead of .fault/deploy server/default/deploy/nuxeo.ear

If you defined your own template, you only have to follow the structure:nuxeo.ear

default-repository-ds.xml has moved from to nuxeo.ear/datasources/ nuxeo.ear/META-INF/
unified-nuxeo-ds.xml has moved to and its content now includes mbeans declarationsnuxeo-ds.xml
nuxeo.ear/system/ has been renamed to nuxeo.ear/bundles/

Assemblies

Deprecated compliance artifacts with old resources were removed.

nuxeo-platform-ear and now only contain:nuxeo-distribution-dm

nuxeo.ear/
|-- bundles
`-- lib

All resources files are generated from templates directories.

Also, the default EAR archives contain in all third-party libraries from the dependency tree (only duplicates are removed). The filtering oflib/
provided libraries is done when building the server distribution (JBoss, Tomcat, ...).

In this section

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

178
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

Impact on sources
and resources

Web
resources
Module
declaration
Web
services
binding

No
mor
e
EJB
3
SU
N-J
AX-
WS
vs
JBo
ss
WS
bin
din
g

Requiremen
ts
declaration
Other
checks you
may want to
do

ejb-
jar.
xml
files
Ser
vlet
s
and
filte
rs
initi
aliz
atio
n
EJB
3
decl
arat
ion
We
b.x
ml
ord
erin
g
Cor
eSe
ssio
n
usa
ge

Dependenci
es

Impact on the
Packaging

Templates
Assemblies

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

179
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

Upgrade from 5.3.1 to 5.3.2

Code migration

5.3.2 is fully backward compatible with 5.3.1 (no compat package is needed).

So, you should have no issues with running your custom code against 5.3.2. If you have any problems, you can contact Nuxeo Support.

Packaging

The packaging system is basically the same as the one used in 5.3.1.

The only change that may have an impact involves resources that are now managed by the new template system.

This means that resources are no longer embedded inside the EAR but handled in a separated templates directory.

This makes changing configurations easier (like switching from H2 to PostgreSQL) and will also allow for upgrades without having to redo all
custom system configurations.

The documentation has been updated accordingly:

Installation Guide
Description of the new configuration system

Data

The only changes done between 5.3.1 and 5.3.2 are the way tags are stored.

Because the Tag Service is now directly part of VCS, some small changes have been done.

Nevertheless, migration should be automatic and transparent.

If you have any problems, you can contact Nuxeo Support.

Configuration

We have changed the way Nuxeo starts OpenOffice.

This is an intermediate solution before we upgrade to JODConverter 3.

The new OOolauncher (that replaces OOodeamon) should:

be more stable,
be easier to set up (removed the dependencies on JNI UNO libs).

Upgrade from 5.3.1 with MySQL to 5.3.2

Why a migration script is needed

A database structure change was introduced with Nuxeo 5.3.2 to fix query with operator IN (for more details, see https://jira.nuxeo.com/browse/N
).XP-5183

Below is an example of structure change:

http://doc.nuxeo.com/x/GATF
https://doc.nuxeo.com/display/NXDOC53/Installation+and+Administration+Guide
https://doc.nuxeo.com/display/NXDOC53/Configuring+Nuxeo+EP
https://jira.nuxeo.com/browse/NXP-5183
https://jira.nuxeo.com/browse/NXP-5183

 Nuxeo Enterprise Platform 5.4 Documentation

180
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

CREATE TABLE `common` (
 `id` varchar(36) NOT NULL,
 `icon` varchar(4000) DEFAULT NULL,
 `icon-expanded` varchar(4000) DEFAULT NULL,
 `size` bigint(20) DEFAULT NULL,
 PRIMARY KEY (`id`),
 KEY `common_id_hierarchy_fk` (`id`),
 CONSTRAINT `common_id_hierarchy_fk` FOREIGN KEY (`id`) REFERENCES `hierarchy` (`id`)
ON DELETE CASCADE
) ENGINE=InnoDB DEFAULT CHARSET=latin1

CREATE TABLE `common` (
 `id` varchar(36) CHARACTER SET latin1 COLLATE latin1_bin NOT NULL DEFAULT '',
 `icon` varchar(4000) DEFAULT NULL,
 `icon-expanded` varchar(4000) DEFAULT NULL,
 `size` bigint(20) DEFAULT NULL,
 PRIMARY KEY (`id`),
 KEY `common_id_hierarchy_fk` (`id`),
 CONSTRAINT `common_id_hierarchy_fk` FOREIGN KEY (`id`) REFERENCES `hierarchy` (`id`)
ON DELETE CASCADE
) ENGINE=InnoDB DEFAULT CHARSET=latin1

See the part that was added for the column .CHARACTER SET latin1COLLATE latin1_bin id

As a consequence, the columns (mainly id) used for foreign key don't have the same definition and it is no more possible to add new constraints,
needed by the features of Nuxeo DM. trying to upgrade to Nuxeo DM 5.4.x will raise this error

java.sql.SQLException: Can't create table 'nuxeodb.#sql-5f31_37d' (errno: 150)

Steps for the migration

You need to follow the steps below to migrate your database structure:

download the script upgradeMySQL.sh attached to this page

edit these properties in the file upgradeMySQL.sh

DB_HOST=localhost
DB_PORT=3306
DB_NAME=nuxeo
DB_USER=user
DB_PWD=password

change permission for the script to run it

$ chmod u+x upgradeMySQL.sh

Sample structure in Nuxeo DM <= 5.3.1

Sample structure in Nuxeo DM >= 5.3.2

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

181
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

launch the script

$./updateMySQL.sh

if everything is fine, you'll have a message to confirm the upgrade was done

Database structure upgraded successfully

Upgrade to Nuxeo DM 5.4.1

Now your database is upgraded, you can test it against Nuxeo DM 5.4.1
Once you've downloaded and unzipped it,

start it without editing anything: it's needed because you'll need to get the lastest hot fixes to make it work

$ cd $NUXEO_HOME/bin
$./nuxeoctl start

follow the wizard steps and register on Nuxeo Connect (needed to download Hot Fixes) if you don't have already an account
restart
log in using the default credentials
navigate to Nuxeo Admin Center > Update Center > Software updates tab
download and install all availables hot fixes (actually at least the three first ones)
stop the server

$./nuxeoctl stop

edit the configuration file and set the database parametersnuxeo.conf

nuxeo.templates=mysql
nuxeo.db.name=nuxeodb
nuxeo.db.user=user
nuxeo.db.password=password
nuxeo.db.host=localhost
nuxeo.db.port=3306

restart the server

$./nuxeoctl start

contemplate that all data are present

Upgrade from 5.3.0 to 5.3.1

Nuxeo DM 5.3.1 is fully backward compatible with Nuxeo DM 5.3.0 GA, hence upgrade is painless and requires no data migration or code
change.

Follow these steps to upgrade.

1. Get the differences between a vanilla Nuxeo DM 5.3.0 and your custom Nuxeo

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

182
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

If you have specific configuration, you'll need to know what files were changed, in order to apply them onto the default one. Here are the folders
and files you have to watch:

$JBOSS/server/default/deploy/nuxeo.ear/config/ => main configuration elements of Nuxeo
$JBOSS/server/default/deploy/nuxeo.ear/datasources/ => configuration of data sources
$JBOSS/server/default/conf/ => specific configuration of Jboss
$JBOSS/server/default/lib/ => specific libraries used by your project (JDBC drivers for instance)
$JBOSS/server/default/deploy/mail-service.xml => configuration of the mail service
$JBOSS/server/default/deploy/nuxeo.ear/OSGI-INF/templates/web.xml

2. Backup your data

Follow this documentation

3. Apply the differences

From the differences you got at step 1, apply them on the Nuxeo DM 5.3.1 you've downloaded
Copy your specific plugins into $JBOSS/server/default/deploy/nuxeo.ear/plugins/

4. Restore data

Copy the data folder (server/default/data) to Nuxeo DM 5.3.1

Upgrades notes

Groups stored in SQL directory

If you were using groups stored in the SQL directory, you have to consider that the "group2group" table must be fixed as its columns were
inverted. childGroupId should be populate with the content of parentGroupId and vice-versa. It is related to NXP-4401

Before applying the command below, you have to check that your SQL configuration has changed. This will be the case if you get the new default
 or if your patch doesn't change the attribute defined in the new -sql-directories-bundle.xml tableReference default-sql-directories-bundle.xml

The attribute should look like:

<tableReference field="subGroups" directory="groupDirectory"
 table="group2group" sourceColumn="parentGroupId"
 targetColumn="childGroupId" schema="group2group" />

In that case, run the following query for PostgreSQL to update the table:

UPDATE group2group SET "childGroupId" = "parentGroupId", "parentGroupId" =
"childGroupId";

OpenSocial

The file format has been changed in 5.3.1, so you may need to use the one provided in 5.3.1 rather thatopensocial.properties
trying to upgrade the one used in 5.3.

For a dashboard initialized in 5.3.0, existing OpenSocial gadgets need to be migrated: see for script and procedure.NXP-4923

Indexing

There are no impacting changes on the storage structure.
If you want to leverage the new default indexing configuration (separated full-text index for title and description), you will have to update your
repository configuration (or use the one provided with 5.3.1) and build the new indexes.

For developers

If you use a custom Nuxeo assembly to package your Nuxeo distribution with your plugins, you will need to modify your existing assembly.

The new system is simpler to configure and extend than the previous one.nuxeo-distribution

See and for more details.here here

http://doc.nuxeo.com/x/GATF
https://doc.nuxeo.com/display/NXDOC/Backup+and+Restore
https://jira.nuxeo.org/browse/NXP-4401
https://jira.nuxeo.org/browse/NXP-4923
http://www.nuxeo.org/xwiki/bin/view/FAQ/nuxeo-distribution
http://www.nuxeo.org/xwiki/bin/view/FAQ/nuxeo-distribution-tools

 Nuxeo Enterprise Platform 5.4 Documentation

183
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

Upgrade from 5.1.6 with JCR + PostgreSQL to 5.2.0

This article will help you to migrate your data from Nuxeo 5.1.6 to Nuxeo 5.2 in the case you are using JackRabbit with PostgreSQL as backend.

We assume that your Nuxeo 5.1.6 is installed in $JBOSS_516 directory and Nuxeo 5.2 in $JBOSS_52 and you have well configured your Nuxeo
5.2 to work with Jackrabbit/PSQL. Otherwise, let's see this .article

The steps to migrate are:

Start an empty nuxeo 5.2 configured in JCR
Customize a nuxeo 5.2 JCR with an database, created for the occasion.emtpy
Start nuxeo 5.2 and log in
shutdown nuxeo 5.2

copy the file $JBOSS_52/server/default/data/NXRuntime/repos/default/repository/nodetypes/custom_nodetypes.xml and keep it in a
temporary location
keep either the directory $JBOSS_52/server/default/data/NXRuntime/repos/default/repository/namespaces/
remove $JBOSS_52/server/default/data
copy the data folder from $JBOSS_516/server/default/data to $JBOSS_52/server/default/data
copy the custom_nodetypes.xml file you kept to $JBOSS_52/server/default/data/NXRuntime/repos/default/repository/nodetypes/
change searchIndex class to org.nuxeo.ecm.core.repository.jcr.jackrabbit.SearchIndex in
$JBOSS_52/server/default/data/NXRuntime/repos/default/workspaces/default/workspace.xml
remove the $JBOSS_52/server/default/data/NXRuntime/repos/default/workspaces/default/index folder to force JackRabbit to rebuild the
indexes
update discrimator column in NXP_LOGS table to allow this value to be null

alter table NXP_LOGS alter discriminator DROP not null
Here is the tricky part, customize the ns_idx.properties in the directory namespaces that you kept:

Compare the file
$JBOSS_52/server/default/data/NXRuntime/repos/default/repository/namespaces/ns_idx.pro
perties with the one you kept from the namespaces directory.
They contain uri and an identifier, example :
http://www.nuxeo.org/ecm/schemas/common/=19
Each identifier is unique!
You need to adapt the ns_idx.properties keeped in order that each uri keep is old
identifier unchanged .

simple example :

$JBOSS_52/server/default/data/NXRuntime/repos/default/repository/namespaces/ns_idx.properties

http://www.nuxeo.org/ecm/schemas/common/=21
http://www.nuxeo.org/ecm/schemas/dublincore/=18
http://project.nuxeo.org/schemas/webengine/site/blog/post=19

$JBOSS_516/server/default/data/NXRuntime/repos/default/repository/namespaces/ns_idx.properties

http://www.nuxeo.org/ecm/schemas/common/=19
http://www.nuxeo.org/ecm/schemas/dublincore/=18

As you see in the 516 file, was identified by 19, so we need to keep this identifier, but http://www.nuxeo.org/ecm/schemas/common/ http://project.
 is already identified by 19 so we will just switch the two identifiers.nuxeo.org/schemas/webengine/site/blog/post

Here is the new file :

http://www.nuxeo.org/ecm/schemas/common/=19
http://www.nuxeo.org/ecm/schemas/dublincore/=18
http://project.nuxeo.org/schemas/webengine/site/blog/post=21

remove the directory $JBOSS_52/server/default/data/NXRuntime/repos/default/repository/namespaces/

http://doc.nuxeo.com/x/GATF
https://doc.nuxeo.com/display/KB/Configure+Nuxeo+5.2+with+Jackrabbit+and+PostgreSQL
http://www.nuxeo.org/ecm/schemas/common/
http://project.nuxeo.org/schemas/webengine/site/blog/post
http://project.nuxeo.org/schemas/webengine/site/blog/post

 Nuxeo Enterprise Platform 5.4 Documentation

184
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

copy your namespace directory (With the customized ns_idx.properties) in
$JBOSS_52/server/default/data/NXRuntime/repos/default/repository/namespaces/
finally adapt nuxeo 5.2 to use the 5.1.6 database.

Just for information, below are the changes you can make manually to update your custom_nodetypes.xml

Two main problems occurs are present in the node type definitions from Nuxeo 5.1.6:

the whole versioning features are not working : no document modification, no version increase, no reading of the previous versions, ...:
this is due to the fact that and are not mixin type any more. Manually you can change these nodes andecm:version ecm:versionHistory
chose isMixin="true" to isMixin="false"
some document definitions have changed :

Workspace type has two new supertypes: and ecmst:publish_ergo ecmst:webcontainer
Forum, Thread and post types use now "ecmdt:Document" as supertype instead of " "ecmnt:document
WikiPage and BlogPost types use " " as supertype instead of " "ecmmix:versionable mix:versionable

Editing the custom_nodetypes file is not easy because you have to format this file (tidy -xml ...) to edit it. So we recommend to replace the old
custom_nodetypes.xml by the new one, generated from a fresh Nuxeo 5.2 installation.

Upgrade from 5.1.2 to 5.1.3

Follow and apply the following procedure _ _ starting Nuxeo.Upgrade Nuxeo before

While upgrading from 5.1.2 to 5.1.3, you may have to manage with a Blob format issue : that means to patch
$JBOSS/server/default/data/NXRuntime/repos/default/repository/nodetypes/custom_nodetypes.xml
Take this file, format it with tidy (tidy -wrap 999 -indent -xml) and apply this patch (manually as it can't guarantee any line numbers; add the lines
beginning with a "+" if not already present):

+ <nodeType hasOrderableChildNodes="false" isMixin="true" name="ecmmix:content"
primaryItemName="">
+ <propertyDefinition autoCreated="false" mandatory="false" multiple="false"
name="digest" onParentVersion="COPY" protected="false" requiredType="String" />
+ <propertyDefinition autoCreated="false" mandatory="false" multiple="false"
name="length" onParentVersion="COPY" protected="false" requiredType="Long" />
+ <propertyDefinition autoCreated="false" mandatory="false" multiple="false"
name="filename" onParentVersion="COPY" protected="false" requiredType="String" />
+ </nodeType>
 <nodeType hasOrderableChildNodes="false" isMixin="false" name="ecmft:content"
primaryItemName="">
 <supertypes>
 <supertype>ecmnt:property</supertype>
+ <supertype>ecmmix:content</supertype>
+ <supertype>nt:resource</supertype>
 </supertypes>
 <propertyDefinition autoCreated="false" mandatory="false" multiple="false"
name="mime-type" onParentVersion="COPY" protected="false" requiredType="String" />
 <propertyDefinition autoCreated="false" mandatory="false" multiple="false"
name="data" onParentVersion="COPY" protected="false" requiredType="Binary" />
 <propertyDefinition autoCreated="false" mandatory="false" multiple="false"
name="encoding" onParentVersion="COPY" protected="false" requiredType="String" />
 </nodeType>

Then, you need to re-index your data. Using (versus web function in advanced search) is recommended.nuxeo-shell

Another solution (than patching custom_nodetypes.xml file) is to export then re-import data before and after the upgrade (using nuxeo-shell too);
but this method will make you loose versioning information.

Customization and Development
Nuxeo Platform provides several solutions to let you customize and extend the platform:

use Nuxeo Studio to do your configurations and extensions via a Web UI,

http://doc.nuxeo.com/x/GATF
http://ecmversion
http://ecmversionHistory
http://ecmstpublish_ergo
http://ecmstwebcontainer
http://ecmntdocument
http://ecmmixversionable
http://mixversionable
https://doc.nuxeo.com/display/NXDOC/Upgrading+the+Nuxeo+Platform
http://doc.nuxeo.org/5.1/nuxeo-book/reference/html/administration.html#nuxeo-shell

 Nuxeo Enterprise Platform 5.4 Documentation

185
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

write XML files to configure Nuxeo and deploy new plugins,
develop your own extensions and plugins.

Choosing the right solution depends on:

your requirements:
if you want to customize your Nuxeo application, Nuxeo Studio should do all the work for you. But if you want to develop a very specific
service or component, you will have to write code;
your profile:
in order to develop extensions to Nuxeo you need to be able to write some Java code.

Using Nuxeo Studio

If you are not used to customizing Nuxeo, you should give a try to , a visual environment to configure your Nuxeo DM, DAM or CMFNuxeo Studio
instance.

Doing XML configuration

Inside the Nuxeo Platform, you can configure a lot of stuff via simple XML files.

We advise you to give first a glance at all the Nuxeo EP wiki domain, so that you get a global idea of the architecture of the product. In particular,
you should have a look at the that will explain you how the platform is built.Runtime and Component Model

Then, you will need to know:

what can be configured inside the platform (what extension points exist);
what contributions are already deployed in the Nuxeo distribution you use.

If you want to go further and configure other aspects of Nuxeo, you don't need to get the source code, you can simply browse the Platform
 that let you browse:Explorer Site

Nuxeo Distributions,
Services,
Extension Points.

For each item, you can have access to description, XML definition and samples.
For an example, you can have a look at this .Sample Link

When you are not creating a real Nuxeo Plugin (i.e. a JAR), XML configuration files should:

be copied in the "config" directory (or),nuxeo.ear/config nxserver/config
have a filename ending with ,-config.xml
have a unique component identifier.

By default, XML files contributed in the "config" directory are loaded only when the server starts, so you need to restart the server to see your
changes.

Java plugins

If you want to go further (or just prefer coding), you can of course use Java to build a new Nuxeo component.

One of the key points is that you don't need Nuxeo source code to do that:

you don't need to have Nuxeo source code to be able to write a plugin,
you don't need to rebuild Nuxeo to deploy your plugin.

Nuxeo Java components are deployed the same way as XML components are deployed, you just have to package the JAR correctly, copy it in
the right location and restart the server.

In order to start coding you basically have 2 options:

read a ,step-by-step tutorial
or
grap the sample project and dive into the code.

The tutorial

The Tutorial (draft) - HTML (also known as the 'Learning Nuxeo DM' Guide).

This tutorial shows you how to extend and customize Nuxeo's "out of the box" functionalities in a step-by-step fashion.

The source code for the tutorial is held in the Nuxeo Subversion repository. Although the tutorial links to the source code in each chapter, it's listed

http://doc.nuxeo.com/x/GATF
https://doc.nuxeo.com/display/Studio/Nuxeo+Online+Services
https://doc.nuxeo.com/display/NXDOC/Runtime+and+Component+Model
http://explorer.nuxeo.org/nuxeo/site/distribution/Nuxeo%20DM-5.4.2/
http://explorer.nuxeo.org/nuxeo/site/distribution/Nuxeo%20DM-5.4.2/
http://explorer.nuxeo.org/nuxeo/site/distribution/
http://explorer.nuxeo.org/nuxeo/site/distribution/Nuxeo%20DM-5.4.2/listServices
http://explorer.nuxeo.org/nuxeo/site/distribution/Nuxeo%20DM-5.4.2/listExtensionPoints
http://explorer.nuxeo.org/nuxeo/site/distribution/Nuxeo%20DM-5.4.2/viewBundle/org.nuxeo.ecm.platform.usermanager
http://www.nuxeo.org/static/dev-tutorial

 Nuxeo Enterprise Platform 5.4 Documentation

186
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

again here for convenience:

Source Code for Chapter 5: Your First Bundle
Source Code for Chapter 6: Improving The Upcoming UI
Source Code for Chapter 7: Internationalization And Localization
Source Code for Chapter 8: Events And Event Listeners
Source Code for Chapter 9: XMap And Logging
Source Code for Chapter 10: Users and Groups
Source Code for Chapter 11: Access Control And Security
Source Code for Chapter 12: Relations And A Bit Of Content

To check out the source code from the Nuxeo Subversion repository you'll need the client installed. Once installed you can check outSubversion
each chapter's source code by entering at the command line (for example):

$ svn export http://svn.nuxeo.org/nuxeo/sandbox/iansmith/book/lesson-bundle/

The command checks out all the source for the lesson-bundle chapter into a directory called lesson-bundle, without any of thesvn export
accompanying .svn files.

The sample project

In addition to the Nuxeo Tutorial, there is a sample project outlined in chapter 3 ('Getting started') of the Nuxeo DM Reference Book:

HTML (Chapter 3 only)
The sample chapter builds on the tutorial, and illustrates a number of additional examples.

The source code for the sample project can be found in the Nuxeo Mercurial repository at the following link:

Sample Project Source Code.

To check the sample code out from this remote repository onto your local machine, you will need to have installed. Once you haveMercurial
Mercurial you can run:

$ hg clone http://hg.nuxeo.org/addons/nuxeo-sample-project

This creates a directory on your local machine called "nuxeo-sample-project" which contains all the source code for Nuxeo the sample project.

The Mercurial repository contains branches such as '5.2' and '5.3'. You can see these branches by entering:

$ hg branches

Check which branch you are in by entering in:

$ hg branch

You can change branches by running for example (if you are currently in the 5.3 branch, and want to switch to the 5.2 branch):

$ hg update 5.3
$ hg branch

Learning to customize Nuxeo EP
Inside Nuxeo EP, pretty much everything is about Extension Point.

Extension points are used to let you contribute XML files to the Nuxeo components.

This means you can use the extension point system :

to define a new Document Type,
to hide a button from the default UI that you want to remove,

http://doc.nuxeo.com/x/GATF
http://svn.nuxeo.org/nuxeo/sandbox/iansmith/book/lesson-bundle
http://svn.nuxeo.org/nuxeo/sandbox/iansmith/book/lesson-basic-ui
http://svn.nuxeo.org/nuxeo/sandbox/iansmith/book/lesson-l10n
http://svn.nuxeo.org/nuxeo/sandbox/iansmith/book/lesson-events
http://svn.nuxeo.org/nuxeo/sandbox/iansmith/book/lesson-xmap
http://svn.nuxeo.org/nuxeo/sandbox/iansmith/book/lesson-users
http://svn.nuxeo.org/nuxeo/sandbox/iansmith/book/lesson-security
http://svn.nuxeo.org/nuxeo/sandbox/iansmith/book/lesson-relations
http://subversion.tigris.org
http://doc.nuxeo.org/current/books/nuxeo-book/html/getting-started.html
http://hg.nuxeo.org/addons/nuxeo-sample-project
http://mercurial.selenic.com/wiki

 Nuxeo Enterprise Platform 5.4 Documentation

187
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

to change the condition that make a particular view available,
to add a new navigation axis,
to change the way the Documents listings are displayed,
...

So before going further, you may want to take a look at the section.Component model overview

Once you have understood the notion of Extension Point and contribution, you can go ahead and start configuring the platform.

For that, you first need to know what you want to configure: find the Extension Point you want to contribute to.
The next sections will give you an overview of the main concepts of the most used extension points.
If you need more, you can directly use the to browse all the available extension points.Platform Explorer

Once you have found your target Extension Point, you simply have to create an XML file that holds the configuration and deploy it inside your
Nuxeo server.

The exact XML content will depends on each extension point, but they all start the same:

<?xml version="1.0"?>
 <component name="unique.name.for.your.xml.contribution">

 <extension target="target.component.identifier"
 point="extensionPointName">

 <!-- XML Content Depending on the target Extension Point goes HERE -->

 </extension>

</component>

In order to have your contribution deployed you need to:

have your filename end with -config.xml,
have your file placed in the config directory (for JBoss distribution or for Tomcat distribution)nuxeo.ear/config nxserver/config

By default, xml configuration files are only read on startup, so you need to restart your server in order to apply the new configuration.

RELATED TOPICS
Component model overview

Document types
This chapter presents the concepts of schemas, facets and document types, which are used to define documents.

In Nuxeo EP, a fundamental entity is the . A file, a note, a vacation request, an expense report, but also a folder, a forum, can all bedocument
thought of as documents. Objects that contain documents, like a folder or a workspace, are also themselves documents.

Any given document has a . The document type is specified at creation time, and does not change during the lifetime of thedocument type
document. When referring to the document type, a short string is often used, for instance "Note" or "Folder".

A document type is defined by several . A schema represents the names and structure (types) of a set of fields in a document. Forschemas
instance, a commonly-used schema is the Dublin Core schema, which specifies a standard set of fields used for document metadata like the title,
description, modification date, etc.

In addition to the schemas that the document type always has, a given document instance can receive . A facet has a name, likefacets
"Downloadable" or "Commentable", and can be associated with zero or more schemas. When a document instance receives a facet, the fields of
its schemas are automatically added to the document.

To create a new document type, we start by creating one or more schemas that the document type will use. The schema is defined in a file.xsd
and is registered by a contribution to the extension point. The document type is then registered through a contribution to the extschema doctype
ension point which specifies which schemas it uses. Facets are also registered through the extension point.doctype

In addition to the structural definition for a document type, there's another registration at the UI level, through a different extension point, to define
how a given document type will be rendered (its icon, layouts, default view, etc.).

Per-document facets and facets associated with schemas are a new feature since Nuxeo EP 5.4.1 (see).NXP-6084

http://doc.nuxeo.com/x/GATF
http://explorer.nuxeo.org/nuxeo/site/distribution/current/listExtensionPoints
http://jira.nuxeo.org/browse/NXP-6084

 Nuxeo Enterprise Platform 5.4 Documentation

188
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

Table of contents:
Schemas
Facets
Structural document types
UI document types

General information
Facelet views
Layout
Containment rules
Summary

Schemas

A schema describes the names and types of some fields. The name is a simple string, like "title", and the type describes what kind of information
it stores, like a string, an integer or a date.

A schema is defined in a file and obeys the standard syntax..xsd XML Schema

For example, we can create a schema in the file:schemas/sample.xsd

<?xml version="1.0"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://project.nuxeo.org/sample/schemas/sample/">
 <xs:element name="sample1" type="xs:string"/>
 <xs:element name="sample2" type="xs:string"/>
</schema>

This schema defines two things:

an XML namespace that will be associated with the schema (but isn't used by Nuxeo EP),
two elements and their type.

The two elements are sample1 and sample2. They are both of type "string", which is a standard type defined by the XML
 specification.Schema

A schema file has to be referenced by Nuxeo configuration to be found and used. The schema must be referenced in the extension pointschema
of the component. A reference to a schema defines:org.nuxeo.ecm.core.schema.TypeService

the schema name,
the schema location (file),
an optional (but recommended) schema prefix.

For example, in the configuration file (the name is just a convention) you can define:OSGI-INF/types-contrib.xml

<?xml version="1.0"?>
<component name="org.nuxeo.project.sample.types">
 <extension target="org.nuxeo.ecm.core.schema.TypeService" point="schema">
 <schema name="sample" src="schemas/sample.xsd" prefix="smp" />
 </extension>
</component>

We name our schema "sample", and the file is referenced through its path, . The schema is.xsd schemas/sample.xsd
registered through the extension point of the Nuxeo component Ourschema org.nuxeo.ecm.core.schema.TypeService
own extension component is given a name, , which is not very important as we onlyorg.nuxeo.project.sample.types
contribute to existing extension points and don't define new ones — but the name must be new and unique.

Finally, like for all components defining configuration, the component has to registered with the system by referencing it from the META-INF/MAN
 file of the bundle.IFEST.MF

The sections below describe how schemas, facets and document types are defined at a low level in Nuxeo EP using XML configuration
files. Unless you're an advanced user, it will be much simpler to use to define them.Nuxeo Studio

http://doc.nuxeo.com/x/GATF
http://www.w3.org/XML/Schema
http://www.w3.org/XML/Schema
http://www.w3.org/XML/Schema
https://doc.nuxeo.com/pages/createpage.action?spaceKey=Studio&title=Define+a+Document+Type

 Nuxeo Enterprise Platform 5.4 Documentation

189
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

In our example, we tell the system that the file has to be read, by mentioning it in the OSGI-INF/types-contrib.xml Nuxeo
 part of the :-Component META-INF/MANIFEST.MF

Manifest-Version: 1.0
Bundle-SymbolicName: org.nuxeo.project.sample;singleton:=true
Nuxeo-Component: OSGI-INF/types-contrib.xml
...

Facets

A facet describes an aspect of a document that can apply to several document types or document instances. Facets can have zero, one or more
schemas associated to them. Configuration is done in the extension point of the same doctype org.nuxeo.ecm.core.schema.TypeService
component as for schemas.

For example, in the same as above, we add the following:OSGI-INF/types-contrib.xml

<?xml version="1.0"?>
<component name="org.nuxeo.project.sample.types">
 ...
 <extension target="org.nuxeo.ecm.core.schema.TypeService"
point="doctype">
 <facet name="Rated">
 <schema name="rating"/>
 </facet>
 ...
 </extension>
</component>

Facets can be used in two ways:

on document types, by adding the facet to the element described below,<doctype>
on document instances, by application code.

When a document's type or a document's instance has a facet, the document behaves normally with respect to the added schemas. Facets with
no schemas are useful to mark certain types or certain document instances specially, for instance to add additional behavior when they are used.

Standard Nuxeo EP facets are:

Folderish: special facet allowing the creation of children in this document,
Orderable: special facet allowing the children of a folderish type to be ordered,
Versionable: special facet marking the document type as versionable,
HiddenInNavigation: special facet for document types which should not appear in listings.

Structural document types

By itself, the schema is not very useful, it must be associated with a document type. This is done in the same extension point as above.doctype
In this extension point, we define:

the document type to create,
which standard document type it extends (usually "Document" or "Folder"),
what schemas it contains,
what facets it has (this implicitly adds all the facet's schemas).

When extending a document type, all its schemas and facets are inherited as well.

For example, in the same as above, we add the following:OSGI-INF/types-contrib.xml

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

190
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

<?xml version="1.0"?>
<component name="org.nuxeo.project.sample.types">
 ...
 <extension target="org.nuxeo.ecm.core.schema.TypeService"
point="doctype">
 ...
 <doctype name="Sample" extends="Document">
 <schema name="common"/>
 <schema name="dublincore"/>
 <schema name="sample"/>
 <facet name="Rated"/>
 </doctype>
 </extension>
</component>

Here we specify that our document type "Sample" will be an extension of the standard system type "Document" and that it will be
composed of three schemas, two standard ones and our specific one, and has one facet.

The standard schemas "common" and "dublincore" already contain standard metadata fields, like a title, a description, the modification date, the
document contributors, etc. Adding it to a document type ensures that a minimal level of functionality will be present, and is recommended for all
types.

UI document types

After the structural document type, a UI registration for our document type must be done for the type to be visible in the Nuxeo DM interface (or in
other applications based on Nuxeo EP). This is done through a contribution to the extension point of the types org.nuxeo.ecm.platform.ty

 component (which is a different component than for the structural types, despite also ending in).pes.TypeService TypeService

For example, in we will define:OSGI-INF/ui-types-contrib.xml

<?xml version="1.0"?>
<component name="org.nuxeo.project.sample.ecm.types">
 <extension target="org.nuxeo.ecm.platform.types.TypeService"
point="types">
 <type id="Sample">
 <label>...</label>
 <icon>...</icon>
 <bigIcon>...</bigIcon>
 <description>...</description>
 <category>...</category>
 <layouts>...</layouts>
 ...
 </type>
 </extension>
</component>

The extension must be added to so that it will be taken into account by the deployment mechanism:META-INF/MANIFEST.MF

Nuxeo-Component: OSGI-INF/types-contrib.xml,
 OSGI-INF/ui-types-contrib.xml

The type element will contain all the information for this type, described below.

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

191
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

General information

The , , , and are used by the user interface, for instance in the creation page when a list of possible typeslabel description icon bigIcon category
is displayed.

label: a short name for the type.
description: a longer description of the type.
icon: a 16x16 icon path for the type, used in listings for instance. The path points to a resource defined in the Nuxeo WAR.
bigIcon: a 100x100 icon path for the type, used in the creation screen for instance.
category: a category for the type, used to separate types in different sections in the creation screen for instance.

Standard categories used in the Nuxeo DM interface are:

SimpleDocument: a simple document
Collaborative: a document or folder-like objects used for collaboration
SuperDocument: a structural document usually created by the system

Other categories can freely be defined.

Example:

 <type id="Sample">
 <label>Sample document</label>
 <description>Sample document to do such and such</description>
 <icon>/icons/file.gif</icon>
 <bigIcon>/icons/file_100.png</bigIcon>
 <category>SimpleDocument</category>
 ...
 </type>

Facelet views

The tag specifies the name of the facelet to use to display this document. This corresponds to a file that lives in the webapp, bydefault-view
default which is a standard view defined in the base Nuxeo EP bundle. This standard view takes care of displayingview_documents.xhtml
available tabs and the document body according to the currently selected type.

The and tags can point to a specific creation or edit facelets.create-view edit-view

Proper defaults are used when these are not specified, so no need to add them to your type.

Example:

 <type id="Sample">
 ...
 <default-view>view_documents</default-view>
 <create-view>create_document</default-view>
 <edit-view>edit_document</default-view>
 ...
 </type>

Layout

A layout is a series of widgets, which makes the association between the field of a schema with a JSF component. The layout is used by the
standard Nuxeo modification and summary views, to automatically display the document metadata according to the layout rules.

Layouts configuration

The section (with a final) defines the layouts for the document type for a given mode.layouts s

Changing it is not advised unless extremely nonstandard rendering is needed.

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

192
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

Defaults mode are:

create for creation,
edit for edition,
view for view,
any for layouts that will be merged in all the other modes.

The names refer to layouts defined on another extension point. Please see the for more information.layout layouts section

Example:

 <type id="Sample">
 ...
 <layouts mode="any">
 <layout>heading</layout>
 <layout>note</layout>
 </layouts>
 ...
 </type>

Deprecated layout configuration

This (without a final) configuration section defines a series of widgets, that describe what the standard layout of this document type willlayout s
be.

Here we define four widgets, displayed as simple input fields or as a text area.

 <type id="Sample">
 ...
 <layout>
 <widget jsfcomponent="h:inputText"
 schemaname="dublincore" fieldname="title"
 required="true" />
 <widget jsfcomponent="h:inputTextarea"
 schemaname="dublincore" fieldname="description" />
 <widget jsfcomponent="h:inputText"
 schemaname="sample" fieldname="sample1" />
 <widget jsfcomponent="h:inputText"
 schemaname="sample" fieldname="sample2" />
 </layout>
 ...
 </type>

Containment rules

The section defines a list of elements for the document types that can be created as children objects of other document types.subtypes type
When defining a type, you can specify:

what child document types can be create in it,
in what parent document types it can be created.

This can also be defined for a pre-existing type, to add new allowed subtypes.

For example, we can specify that the Sample type can be created in a Folder and a Workspace. Note that we define two new <t
 sections here, we don't add this information in the section.ype> <type id="Sample">

This is the old and deprecated layout configuration that has been replaced by the one described above. If present, it is used instead of
the new configuration for compatibility purposes.

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

193
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

 <type id="Folder">
 <subtypes>
 <type>Sample</type>
 </subtypes>
 </type>
 <type id="Workspace">
 <subtypes>
 <type>Sample</type>
 </subtypes>
 </type>

It is also possible to define that some types will not be allowed as children in some cases (creation, copy/paste). To do that, a attribute forhidden
the element can be used.type

The hidden cases are stored in a list, so if a check is needed for a hidden case, then the hidden cases list ought to be verified to check it contains
that particular case.

Example:

 <type id="Workspace">
 <subtypes>
 <type>Workspace</type>
 <type hidden="create, paste">Folder</type>
 <type>File</type>
 <type>Note</type>
 </subtypes>
 </type>

Summary

The final looks like:OSGI-INF/ui-types-contrib.xml

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

194
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

<?xml version="1.0"?>
<component name="org.nuxeo.project.sample.ecm.types">
 <extension target="org.nuxeo.ecm.platform.types.TypeService" point="types">
 <type id="Sample">
 <label>Sample document</label>
 <description>Sample document to do such and such</description>
 <icon>/icons/file.gif</icon>
 <bigIcon>/icons/file_100.png</bigIcon>
 <category>SimpleDocument</category>
 <layouts mode="any">
 <layout>heading</layout>
 <layout>note</layout>
 </layouts>
 </type>
 <type id="Folder">
 <subtypes>
 <type>Sample</type>
 </subtypes>
 </type>
 <type id="Workspace">
 <subtypes>
 <type>Sample</type>
 </subtypes>
 </type>
 </extension>
</component>

Document, form and listing views
The views on documents, the forms to create or edit them, how lists of documents are presented, all that can be changed in a Nuxeo application,
to make sure the information displayed are meaningful. To enable the customization of how documents, forms and listings are presented, Nuxeo
EP-based application use layouts and content views.

In this section:
Layouts (forms and views)

Manage layouts
Document layouts
Layout display
Standard widget types
Custom templates
Custom widget types
Generic layout usage

Content views
Custom Page Providers
Page Providers without Content Views

Views on documents

Layouts (forms and views)

Let our artists go wild on imaginative page layouts.

– Grant Morrison

Layouts are used to generate pages rendering from an xml configuration.

In a document oriented perspective, layouts are mostly used to display a document metadata in different use cases: present a form to set its
schemas fields when creating or editing the document, and present these fields values when simply displaying the document. A single layout
definition can be used to address these use cases as it will be rendered for a given document and in a given mode.

In this chapter we will see how to define a layout, link it to a document type, and use it in XHTML pages.

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

195
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

Layouts

A layout is a group of widgets that specifies how widgets are assembled and displayed. It manages widget rows and has global control on the
rendering of each of its widgets.

Widgets

It's all the same machine, right? The Pentagon, multinational corporations, the police! You do one little job, you build a widget in
Saskatoon and the next thing you know it's two miles under the desert, the essential component of a death machine!

– Holloway, Cube

A widget defines how one or several fields from a schema will be presented on a page. It can be displayed in several modes and holds additional
information like for instance the field label. When it takes user entries, it can perform conversion and validation like usual JSF components.

Widget types

A widget definition includes the mention of its type. Widget types make the association between a widget definition and the JSF component tree
that will be used to render it in a given mode.

Modes

Both layouts and widgets have modes.

The layout modes can be anything although some default modes are included in the application: create, edit, view, listing and search. Since 5.4.2,
some new default modes are included: bulkEdit, header, csv, pdf and plain.

The widget modes are more restricted and widget types will usually only handle two modes: edit and view. The widget mode is computed from the
layout mode following this rule: if the layout is in mode create, edit or search, the widget will be in edit mode. Otherwise the widget will be in view
mode. Since 5.4.2, new widget modes have been added: pdf, csv and plain. 'plain' is the new default mode, as it is very close to the view mode
except it's not supposed to include HTML tags.

Here is a table of the default mappings:

Layout Mode Default Widget Mode

create*, edit*, search*, bulkEdit* edit

view*, summary* view

csv* csv

pdf* pdf

any other value 'view' before 5.4.2, 'plain' after

It is possible to override this behavior in the widget definition, and state that, for instance, whatever the layout mode, the widget will be in view
mode so that it only displays read-only values. The pseudo-mode "hidden" can also be used in a widget definition to exclude this widget from the
layout in a given mode.

The pseudo mode "any" is only used in layouts and widgets definitions to set up default values.

The following pages explain how to work with layouts:
Manage layouts
Document layouts
Layout display
Standard widget types
Custom templates
Custom widget types
Generic layout usage

Manage layouts

Custom layouts can be contributed to the web layout service, using its extension point. The layout definition is then available through the service
to control how it will be displayed in a given mode.

Some JSF tags have been added to the Nuxeo ECM layout tag library to make then easily available from an xhtml page.

Since Nuxeo 5.4, the mapping between the layout mode and the widget more is more loose: if the layout is in mode create, edit,
bulkEdit or search, , the widget will be in edit mode. Otherwise the widget will be inor if its mode starts with one of these mode names
the default mode ('view' before 5.4.1, and 'plain' after).

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

196
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

Layout registration

Layouts are registered using a regular extension point on the Nuxeo ECM layout service. Here is a sample contribution.

<?xml version="1.0"?>

<component name="org.nuxeo.ecm.platform.forms.layouts.webapp">

 <extension target="org.nuxeo.ecm.platform.forms.layout.WebLayoutManager"
 point="layouts">

 <layout name="heading">
 <templates>
 <template mode="any">/layouts/layout_default_template.xhtml</template>
 </templates>
 <rows>
 <row>
 <widget>title</widget>
 </row>
 <row>
 <widget>description</widget>
 </row>
 </rows>
 <widget name="title" type="text">
 <labels>
 <label mode="any">label.dublincore.title</label>
 </labels>
 <translated>true</translated>
 <fields>
 <field>dc:title</field>
 </fields>
 <properties widgetMode="edit">
 <property name="required">true</property>
 </properties>
 </widget>
 <widget name="description" type="textarea">
 <labels>
 <label mode="any">label.dublincore.description</label>
 </labels>
 <translated>true</translated>
 <fields>
 <field>dc:description</field>
 </fields>
 </widget>
 </layout>

 </extension>

</component>

Layout definition

The above layout definition is used to display the title and the description of a document. Here are its properties:

name: string used as an identifier. In the example, the layout name is "heading".
templates: list of templates to use for this layout global rendering. In the example, the layout template in any mode is the xhtml file at "/l

". Please refer to section about custom layout templates for more information.ayouts/layout_default_template.xhtml
rows: definition about what widgets will have to be displayed on this row. Each row can hold several widgets, and an empty widget tag

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

197
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

can be used to control the alignment. The widget has to match a widget name given in this layout definition. In the example, two rows
have been defined, the first one will hold the "title" widget, and the second one will hold the "description" widget.
widget: a layout definition can hold any number of widget definitions. If the widget is not referenced in the rows definition, it will be
ignored. Since 5.1.7 and 5.2.0, it will be searched in the global widget registry before being ignored. This new feature is a convenient way
to share widget definitions between layouts. Please refer the widget definition section.

Widget definition

Two widget definitions are presented on the above example. Let's look into the "title" widget and present its properties:

name: string used as an identifier in the layout context. In the example, the widget name is "title".
type: the widget type that will manage the rendering of this widget. In this example, the widget type is "text". This widget type is a
standard widget types, more information about widget types is available here.
labels: list of labels to use for this widget in a given mode. If no label is defined in a specific mode, the label defined in the "any" mode will
be taken as default. In the example, a single label is defined for any mode to the "label.dublicore.title" message. If no label is defined at
all, a default label will be used following the convention: "label.widget.[layoutName].[widgetName]".
translated: string representing a boolean value ("true" or "false") and defaulting to "false". When set as translated, the widget labels will
be treated as messages and displayed translated. In the example, the "label.dublincore.title" message will be translated at rendering time.
Default is true.
fields: list of fields that will be managed by this widget. In the example, we handle the field "dc:title" where "dc" is the prefix for the
"dublincore" schema. If the schema you would like to use does not have a prefix, use the schema name instead. Note that most of
standard widget types only handle one field. Side note: when dealing with an attribute from the document that is not a metadata, you can
use the property name as it will be resolved like a value expression of the form #{document.attribute}.
properties: list of properties that will apply to the widget in a given mode. Properties listed in the "any" mode will be merged with
properties for the specific mode. Depending on the widget type, these properties can be used to control what jsf component will be used
and/or what attributes will be set on these components. In standard widget types, only one component is used given the mode, and
properties will be set as attributes on the component. For instance, when using the "text" widget type, every property accepted by the
"<h:inputText />" tag can be set as properties on "edit" and "create" modes, and every property accepted by the "<h:outputText />" tag
can be set as properties. Properties can also be added in a given widget mode.

Additional properties can be set on a widget:

helpLabels: list that follows the same pattern as labels, but used to set help labels.
widgetModes: list of local modes used to override the local mode (from the layout).
subWidgets: list of widget definitions, as the widget list, used to describe sub widgets use to help the configuration of some complex
widget types.

Here is a more complex layout contribution that shows the syntax to use for these additional properties:

<?xml version="1.0"?>

<component name="org.nuxeo.ecm.platform.forms.layouts.webapp">

 <!-- WARNING: this extension point is only available from versions 5.1.7 and 5.2.0
-->
 <extension target="org.nuxeo.ecm.platform.forms.layout.WebLayoutManager"
 point="widgets">

 <!-- global definition of a widget so that it can be used
 in several layouts -->
 <widget name="description" type="textarea">
 <labels>
 <label mode="any">description</label>
 </labels>
 <translated>true</translated>
 <fields>
 <field>dc:description</field>
 </fields>
 <properties widgetMode="edit">
 <property name="styleClass">dataInputText</property>
 </properties>
 </widget>

 </extension>

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

198
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

 <extension target="org.nuxeo.ecm.platform.forms.layout.WebLayoutManager"
 point="layouts">

 <layout name="complex">
 <templates>
 <template mode="any">/layouts/layout_default_template.xhtml</template>
 </templates>
 <rows>
 <row>
 <widget>identifier</widget>
 </row>
 <row>
 <!-- reference a global widget -->
 <widget>description</widget>
 </row>
 </rows>
 <widget name="identifier" type="text">
 <labels>
 <label mode="any">label.dublincore.title</label>
 </labels>
 <translated>true</translated>
 <fields>
 <field>uid:uid</field>
 </fields>
 <widgetModes>
 <!-- not shown in create mode -->
 <mode value="create">hidden</mode>
 </widgetModes>
 <properties widgetMode="edit">
 <!-- required in widget mode edit -->
 <property name="required">true</property>
 </properties>
 <properties mode="view">
 <!-- property applying in view mode -->
 <property name="styleClass">cssClass</property>
 </properties>
 </widget>
 </layout>

 </extension>

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

199
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

</component>

Listing layout definition

Layouts can also be used to render table rows, as long as their mode (or their widgets mode) do not depend on the iteration variable, as the
layout is built when building the JSF tree (too early in the JSF construction mechanism for most iteration variables).

For this usage, columns/column aliases have been defined because they are more intuitive when describing a row in the layout. The layout layo
 makes it possible to define new properties to take care of when rendering the table header or columns.ut_listing_template.xhtml

<?xml version="1.0"?>

<component name="org.nuxeo.ecm.platform.forms.layouts.webapp.listing">

 <extension target="org.nuxeo.ecm.platform.forms.layout.WebLayoutManager"
 point="widgets">

 <widget name="listing_selection_box_with_current_document"
 type="listing_selection_box_with_current_document">
 <labels>
 <label mode="any"></label>
 </labels>
 <fields>
 <field>selected</field>
 <field>data.ref</field>
 </fields>
 </widget>

 <widget name="listing_icon_type" type="listing_icon_type">
 <labels>
 <label mode="any"></label>
 </labels>
 <fields>
 <field>data</field>
 <field>data.ref</field>
 <field>data.type</field>
 <field>data.folder</field>
 </fields>
 </widget>

 <widget name="listing_title_link" type="listing_title_link">
 <labels>
 <label mode="any">label.content.header.title</label>
 </labels>
 <translated>true</translated>
 <fields>
 <field>data</field>
 <field>data.ref</field>
 <field>data.dc.description</field>
 <field>data.file.content</field>
 <field>data.file.filename</field>
 </fields>
 <properties mode="any">
 <property name="file_property_name">file:content</property>
 <property name="file_schema">file</property>
 </properties>

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

200
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

 </widget>

 <widget name="listing_modification_date" type="datetime">
 <labels>
 <label mode="any">label.content.header.modified</label>
 </labels>
 <translated>true</translated>
 <fields>
 <field>data.dc.modified</field>
 </fields>
 <properties widgetMode="any">
 <property name="pattern">#{nxu:basicDateAndTimeFormater()}</property>
 </properties>
 </widget>

 </extension>

 <extension target="org.nuxeo.ecm.platform.forms.layout.WebLayoutManager"
 point="layouts">

 <layout name="document_listing_sample">
 <templates>
 <template mode="any">/layouts/layout_listing_template.xhtml</template>
 </templates>
 <properties mode="any">
 <property name="showListingHeader">true</property>
 <property name="showRowEvenOddClass">true</property>
 </properties>
 <columns>
 <column>
 <properties mode="any">
 <property name="isListingSelectionBoxWithCurrentDocument">
 true
 </property>
 <property name="useFirstWidgetLabelAsColumnHeader">false</property>
 <property name="columnStyleClass">iconColumn</property>
 </properties>
 <widget>listing_selection_box_with_current_document</widget>
 </column>
 <column>
 <properties mode="any">
 <property name="useFirstWidgetLabelAsColumnHeader">false</property>
 <property name="columnStyleClass">iconColumn</property>
 </properties>
 <widget>listing_icon_type</widget>
 </column>
 <column>
 <properties mode="any">
 <property name="useFirstWidgetLabelAsColumnHeader">true</property>
 <property name="sortPropertyName">dc:title</property>
 </properties>
 <widget>listing_title_link</widget>
 </column>
 <column>
 <properties mode="any">
 <property name="useFirstWidgetLabelAsColumnHeader">true</property>
 <property name="sortPropertyName">dc:modified</property>
 </properties>
 <widget>listing_modification_date</widget>

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

201
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

 </column>
 </columns>
 </layout>

 </extension>

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

202
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

</component>

Here widgets have been defined globally, as well as their types. New widget types, or simply widget templates, can be made taking example on
the existing ones, see http://hg.nuxeo.org/nuxeo/nuxeo-jsf/file/5.4/nuxeo-platform-webapp-base/src/main/resources/OSGI-INF/layouts-listing-cont

.rib.xml

More information about how to write a listing layout template can be read in chapter about . If you need to define listing layoutsCustom templates
that handle column selection, please refer to the chapter as it gives a complete example on how this is achieved for this feature.Advanced search

EL expressions in layouts and widgets

Some variables are made available to the EL context when using layout or widget templates.

Inside the layout context, the following global variables are available: value (and equivalent document) + levels and changing "value"
context

layoutValue: represents the value (evaluated) passed in a "nxl:layout" or "nxl:documentLayout" tag attributes.
layoutMode: represents the mode (evaluated) passed in a "nxl:layout" or "nxl:documentLayout" tag attributes.
value: represents the current value as manipulated by the tag: in a "nxl:layout" tag, it will represent the value resolved from the
"value" tag attribute ; in a "nxl:widget" tag, it will represent the value resolved from the "value" tag attribute. This value will work
with field information passed in the widget definition to resolve fields and subfields. The variable "document" is available as an
alias, although it does not always represent a document model (as layouts can apply to any kind of object).
value_n: represents the current value as manipulated by the tag, as above, excepts it includes the widget level (value_0,
value_1, etc...). This is useful when needing to use the value as defined in a parent widget, for instance.

Inside a layout template, the variable "layout" is available, it make its possible to access the generated layout object.
Inside a "nxl:layoutRow", or equivalent "nxl:layoutColumn" tag, the variables "layoutRow" and "layoutRowIndex" are available to access
the generated layout row, and its index within the iteration over rows. The equivalent "layoutColumn" and "layoutColumnIndex" variables
are also available.
Inside a "nxl:layoutRowWidget", or equivalent "nxl:layoutColumn" widget, the variables "widget" and "widgetIndex" are available to access
the generated current widget, and its index in the row or column. The variables added the level information are also available: widget_0,
widget_1, ... and widgetIndex_0, widgetIndex_1... This is useful when needed to use the widget as defined in a higher level.
Inside a widget template, some "field_n" variables are available: "field_0" represents the resolved first field value, "field_1" the second
value, etc... Since 5.3.1, the variable "field" is available as an alias to "field_0". Since 5.3.2, the widget properties are also exposed for
easier resolution of EL expressions: for instance, the variable "widgetProperty_onchange" represents the resolved property with name
"onchange".

The complete reference is available at .http://doc.nuxeo.org/current/tlddoc/nxl/tld-summary.html

Document layouts

Layouts can be linked to a document type definition by specifying the layout names:

<layouts mode="any">
 <layout>heading</layout>
 <layout>note</layout>
</layouts>

Layouts are defined in a given mode; layouts in the "any" mode will be used as default when no layouts are given in specific modes.

Since 5.2.GA, it is possible to merge layouts when redefining the document type, adding a property append="true":

<layouts mode="any" append="true">
 <layout>newLayout</layout>
</layouts>

Since 5.3.1, a new mode "listing" can be used for folderish documents. Their default content will use the given layouts to make it possible to
switch between the different presentations. Since 5.4.0, this configuration is deprecated as it is now possible to configure it through Content Views
.

Some default listing layouts have been defined, the one used by default when no layout is given in this mode is "document_listing". To remove the
layouts defined by default on a document type, override it without listing any modes.

http://doc.nuxeo.com/x/GATF
http://hg.nuxeo.org/nuxeo/nuxeo-jsf/file/5.4/nuxeo-platform-webapp-base/src/main/resources/OSGI-INF/layouts-listing-contrib.xml
http://hg.nuxeo.org/nuxeo/nuxeo-jsf/file/5.4/nuxeo-platform-webapp-base/src/main/resources/OSGI-INF/layouts-listing-contrib.xml
http://doc.nuxeo.org/current/tlddoc/nxl/tld-summary.html

 Nuxeo Enterprise Platform 5.4 Documentation

203
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

<layouts mode="listing">
</layouts>

<layouts mode="listing">
 <layout>document_listing</layout>
 <layout>document_listing_compact_2_columns</layout>
 <layout>document_icon_2_columns</layout>
</layouts>

Layouts with a name that ends with "2_columns" will be displayed on two columns by default. The layout name will be used as a message key for
the selector label.

Layout display

Layouts can be displayed thanks to a series a JSF tags that will query the web layout service to get the layout definition and build it for a given
mode.

For instance, we can use the documentLayout tag to display the layouts of a document:

<div xmlns="http://www.w3.org/1999/xhtml"
 xmlns:nxl="http://nuxeo.org/nxforms/layout">
 <nxl:documentLayout mode="view" value="#{currentDocument}" />
</div>

Since 5.4.2, it is possible to make a distinction between the layouts defined in a given mode on the document, and the mode used to render
layouts, for instance:

<nxl:documentLayout documentMode="header" mode="view"
 value="#{currentDocument}" defaultLayout="document_header"
 includeAnyMode="false" />

We can also display a specific layout for a document, even if it is not specified in the document type definition:

<div xmlns="http://www.w3.org/1999/xhtml"
 xmlns:nxl="http://nuxeo.org/nxforms/layout">
 <nxl:layout name="heading" mode="view" value="#{currentDocument}" />
</div>

For instance, here is a sample display of a listing layout. The layout template is configured to display table rows. It will display header rows when
the parameter "showListingHeader" is true.

You can include a layout in a dataTable tag, but cannot make its mode depend on the iteration variable. If you need to do so,
recommendation is to use nxu:repeat tag and handle all the <table> works by yourself.

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

204
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

<table class="dataOutput">
 <c:forEach var="row" items="#{documents.rows}" varStatus="layoutListingStatus">
 <c:set var="showListingHeader" value="#{layoutListingStatus.index == 0}" />
 <nxl:layout name="#{layoutName}" value="#{row}" mode="view"
 selectedColumns="#{selectedResultLayoutColumns}" />
 </c:forEach>
</table>

Please refer to the tag library documentation available at .http://community.nuxeo.com/api/nuxeo/5.4/tlddoc/nxl/tld-summary.html

Standard widget types

A series of widget types has been defined for the most generic uses cases.

Please refer to the tag library documentation available at for nuxeo jsf tags.http://community.nuxeo.com/api/nuxeo/5.4/tlddoc/

text

The text widget displays an input text in create or edit mode, with additional message tag for errors, and a regular text output in any other mode.
Widgets using this type can provide properties accepted on a <h:inputText /> tag in create or edit mode, and properties accepted on a
<h:outputText /> tag in other modes.

View online demo: .http://layout.demo.nuxeo.org/nuxeo/layoutDemo/textWidget

int

The int widget displays an input text in create or edit mode, with additional message tag for errors, and a regular text output in any other mode. It
uses a number converter. Widgets using this type can provide properties accepted on a <h:inputText /> tag in create or edit mode, and properties
accepted on a <h:outputText /> tag in other modes.

View online demo: .http://layout.demo.nuxeo.org/nuxeo/layoutDemo/intWidget

secret

The secret widget displays an input secret text in create or edit mode, with additional message tag for errors, and nothing in any other mode.
Widgets using this type can provide properties accepted on a <h:inputSecret /> tag in create or edit mode.

View online demo: .http://layout.demo.nuxeo.org/nuxeo/layoutDemo/secretWidget

textarea

The textarea widget displays a textarea in create or edit mode, with additional message tag for errors, and a regular text output in any other mode.
Widgets using this type can provide properties accepted on a <h:inputTextarea /> tag in create or edit mode, and properties accepted on a
<h:outputText /> tag in other modes.

View online demo: .http://layout.demo.nuxeo.org/nuxeo/layoutDemo/textareaWidget

datetime

The datetime widget displays a javascript calendar in create or edit mode, with additional message tag for errors, and a regular text output in any
other mode. It uses a date time converter. Widgets using this type can provide properties accepted on a <nxu:inputDatetime /> tag in create or
edit mode, and properties accepted on a <h:outputText /> tag in other modes. The converter will also be given these properties.

View online demo: .http://layout.demo.nuxeo.org/nuxeo/layoutDemo/datetimeWidget

template

The template widget displays a template content whatever the mode. Widgets using this type must provide the path to this template; this template
can check the mode to adapt the rendering.

Information about how to write a template is given in the custom widget template section.

file

The file widget displays a file uploader/editor in create or edit mode, with additional message tag for errors, and a link to the file in other modes.
Widgets using this type can provide properties accepted on a <nxu:inputFile /> tag in create or edit mode, and properties accepted on a

http://doc.nuxeo.com/x/GATF
http://community.nuxeo.com/api/nuxeo/5.4/tlddoc/nxl/tld-summary.html
http://community.nuxeo.com/api/nuxeo/5.4/tlddoc/
http://layout.demo.nuxeo.org/nuxeo/layoutDemo/textWidget
http://layout.demo.nuxeo.org/nuxeo/layoutDemo/intWidget
http://layout.demo.nuxeo.org/nuxeo/layoutDemo/secretWidget
http://layout.demo.nuxeo.org/nuxeo/layoutDemo/textareaWidget
http://layout.demo.nuxeo.org/nuxeo/layoutDemo/datetimeWidget

 Nuxeo Enterprise Platform 5.4 Documentation

205
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

<nxu:outputFile /> tag in other modes.

View online demo: .http://layout.demo.nuxeo.org/nuxeo/layoutDemo/fileWidget

htmltext

The htmltext widget displays an html text editor in create or edit mode, with additional message tag for errors, and a regular text output in other
modes (without escaping the text). Widgets using this type can provide properties accepted on a <nxu:editor /> tag in create or edit mode, and
properties accepted on a <nxu:outputText /> tag in other modes.

View online demo: .http://layout.demo.nuxeo.org/nuxeo/layoutDemo/htmltextWidget

selectOneDirectory

The selectOneDirectory widget displays a selection of directory entries in create or edit mode, with additional message tag for errors, and the
directory entry label in other modes. Widgets using this type can provide properties accepted on a <nxd:selectOneListbox /> tag in create or edit
mode, and properties accepted on a <nxd:directoryEntryOutput /> tag in other modes.

View online demo: .http://layout.demo.nuxeo.org/nuxeo/layoutDemo/selectOneDirectoryWidget

selectManyDirectory

The selectManyDirectory widget displays a multi selection of directory entries in create or edit mode, with additional message tag for errors, and
the directory entries labels in other modes. Widgets using this type can provide properties accepted on a <nxd:selectManyListbox /> tag in create
or edit mode, and properties accepted on a <nxd:directoryEntryOutput /> tag in other modes.

View online demo: .http://layout.demo.nuxeo.org/nuxeo/layoutDemo/selectManyDirectoryWidget

list

The list widget displays an editable list of items in create or edit mode, with additional message tag for errors, and the same list of items in other
modes. Items are defined using sub widgets configuration. This actually a template widget type whose template uses a <nxu:inputList /> tag in
edit or create mode, and a table iterating over items in other modes.

View online demo: http://layout.demo.nuxeo.org/nuxeo/layoutDemo/listWidget

checkbox

The checkbox widget displays a checkbox in create, edit and any other mode, with additional message tag for errors. Widgets using this type can
provide properties accepted on a <h:selectBooleanCheckbox /> tag in create, edit mode, and other modes.

View online demo: .http://layout.demo.nuxeo.org/nuxeo/layoutDemo/checkboxWidget

Custom templates

Some templating feature have been made available to make it easier to control the layouts and widgets rendering.

Custom layout template

A layout can define an xhtml template to be used in a given mode. Let's take a look at the default template structure.

<f:subview
 xmlns:c="http://java.sun.com/jstl/core"
 xmlns:f="http://java.sun.com/jsf/core"
 xmlns:h="http://java.sun.com/jsf/html"
 xmlns:nxl="http://nuxeo.org/nxforms/layout"
 xmlns:nxu="http://nuxeo.org/nxweb/util"
 xmlns:nxd="http://nuxeo.org/nxweb/document"
 id="#{layout.id}">

<c:if test="#{layout.mode != 'edit' and layout.mode != 'create' and layout.mode !=
'bulkEdit'}">

 <table class="dataInput">
 <tbody>

 <nxl:layoutRow>

http://doc.nuxeo.com/x/GATF
http://layout.demo.nuxeo.org/nuxeo/layoutDemo/fileWidget
http://layout.demo.nuxeo.org/nuxeo/layoutDemo/htmltextWidget
http://layout.demo.nuxeo.org/nuxeo/layoutDemo/selectOneDirectoryWidget
http://layout.demo.nuxeo.org/nuxeo/layoutDemo/selectManyDirectoryWidget
http://layout.demo.nuxeo.org/nuxeo/layoutDemo/listWidget
http://layout.demo.nuxeo.org/nuxeo/layoutDemo/checkboxWidget

 Nuxeo Enterprise Platform 5.4 Documentation

206
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

 <tr>
 <nxl:layoutRowWidget>
 <c:choose>
 <c:when test="#{widget.translated}">
 <td class="iconColumn" style="vertical-align:top;">
 <c:if test="#{!empty widget.helpLabel}">
 <h:graphicImage value="/icons/lightbulb.png"
 onmouseover="tooltip.show('#{messages[widget.helpLabel]}',
500);"
 onmouseout="tooltip.hide();" />
 </c:if>
 </td>
 <td class="labelColumn">
 <h:outputText value="#{messages[widget.label]}" />
 </td>
 </c:when>
 <c:otherwise>
 <td class="iconColumn" style="vertical-align:top;">
 <c:if test="#{!empty widget.helpLabel}">
 <h:graphicImage value="/icons/lightbulb.png"
 onmouseover="tooltip.show('#{widget.helpLabel}', 500);"
 onmouseout="tooltip.hide();" />
 </c:if>
 </td>
 <td class="labelColumn">
 <h:outputText value="#{widget.label}" />
 </td>
 </c:otherwise>
 </c:choose>
 <td class="fieldColumn" colspan="#{nxu:test(layoutRow.size==1,
2*layout.columns-1, 1)}">
 <nxl:widget widget="#{widget}" value="#{value}" />
 </td>
 </nxl:layoutRowWidget>
 </tr>
 </nxl:layoutRow>

 </tbody>
 </table>

</c:if>

<c:if test="#{layout.mode == 'edit' or layout.mode == 'create' or layout.mode ==
'bulkEdit'}">

 <table class="dataInput">
 <tbody>

 <nxl:layoutRow>
 <tr>
 <nxl:layoutRowWidget>
 <c:choose>
 <c:when test="#{widget.translated}">
 <td class="iconColumn" style="vertical-align:top;">
 <c:if test="#{!empty widget.helpLabel}">
 <h:graphicImage value="/icons/lightbulb.png"
 onmouseover="tooltip.show('#{messages[widget.helpLabel]}',
500);"
 onmouseout="tooltip.hide();" />

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

207
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

 </c:if>
 </td>
 <td class="labelColumn">
 <h:outputText value="#{messages[widget.label]}"
 styleClass="#{nxu:test(widget.required, 'required', '')}" />
 </td>
 </c:when>
 <c:otherwise>
 <td class="iconColumn" style="vertical-align:top;">
 <c:if test="#{!empty widget.helpLabel}">
 <h:graphicImage value="/icons/lightbulb.png"
 onmouseover="tooltip.show('#{widget.helpLabel}', 500);"
 onmouseout="tooltip.hide();" />
 </c:if>
 </td>
 <td class="labelColumn">
 <h:outputText value="#{widget.label}"
 styleClass="#{nxu:test(widget.required, 'required', '')}" />
 </td>
 </c:otherwise>
 </c:choose>
 <td class="fieldColumn" colspan="#{nxu:test(layoutRow.size==1,
2*layout.columns-1, 1)}">
 <nxl:widget widget="#{widget}" value="#{value}" />
 </td>
 </nxl:layoutRowWidget>
 </tr>
 </nxl:layoutRow>

 </tbody>
 </table>

</c:if>

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

208
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

</f:subview>

This template is intended to be unused in any mode, so the layout mode is checked to provide a different rendering in "edit" or "create" modes
and other modes.

When this template is included in the page, several variables are made available:

layout: the computed layout value ; its mode and number of columns can be checked on it.
value or document: the document model (or whatever item used as value).

The layout system integration using facelets features requires that iterations are performed on the layout rows and widgets. The <nxl:layoutRow>
and <nxl:layoutRowWidget /> trigger these iterations. Inside the layoutRow tag, two more variables are made available: layoutRow and
layoutRowIndex. Inside the layoutRowWidget, two more variables are made available: widget and widgetIndex.

These variables can be used to control the layout rendering. For instance, the default template is the one applying the "required" style on widget
labels, and translating these labels if the widget must be translated. It also makes sure widgets on the same rows are presented in the same table
row.

Listing template

This layout intends to render columns within a table: each line will be filled thanks to a layout configuration. It is only used in view mode. Let's take
a look at the default listing template structure.

<f:subview
 xmlns:c="http://java.sun.com/jstl/core"
 xmlns:f="http://java.sun.com/jsf/core"
 xmlns:h="http://java.sun.com/jsf/html"
 xmlns:nxl="http://nuxeo.org/nxforms/layout"
 xmlns:nxu="http://nuxeo.org/nxweb/util"
 xmlns:nxd="http://nuxeo.org/nxweb/document"
 xmlns:a4j="https://ajax4jsf.dev.java.net/ajax"
 id="#{layout.id}">

<c:if test="false">
 Layout template applying to an item instance of PageSelections<DocumentModel>
named "documents"

 Other needed parameters are:
 - provider: instance of a PageProvider<DocumentModel> to handle sort
 - layoutListingStatus: iteration status, used to print table header
 matching widget label.
</c:if>

<nxu:set var="hasSeveralSorts"
 value="#{provider.getSortInfos().size() > 1}"
 cache="true">

<c:if test="#{showListingHeader and layout.properties.showListingHeader}">
 <thead>
 <tr>
 <nxl:layoutColumn>
 <th>
 <c:choose>
 <c:when test="#{layoutColumn.properties.isListingSelectionBox}">
 <h:selectBooleanCheckbox id="#{layoutColumn.widgets[0].name}_header"
 title="#{messages['tooltip.content.select.all']}"
 value="#{documents.selected}">
 <a4j:support event="onclick"
 action="#{documentListingActions.processSelectPage(contentView.name,

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

209
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

contentView.selectionListName, documents.selected)}"
 onclick="javascript:handleAllCheckBoxes('#{contentView.name}',
this.checked)"
 reRender="ajax_selection_buttons" />
 </h:selectBooleanCheckbox>
 </c:when>
 <c:when
test="#{layoutColumn.properties.isListingSelectionBoxWithCurrentDocument}">
 <h:selectBooleanCheckbox id="#{layoutColumn.widgets[0].name}_header"
 title="#{messages['tooltip.content.select.all']}"
 value="#{documents.selected}">
 <a4j:support event="onclick"
 onclick="javascript:handleAllCheckBoxes('#{contentView.name}',
this.checked)"

action="#{documentListingActions.checkCurrentDocAndProcessSelectPage(contentView.name,
contentView.selectionListName, documents.selected, currentDocument.ref)}"
 reRender="ajax_selection_buttons" />
 </h:selectBooleanCheckbox>
 </c:when>
 <c:when
test="#{layoutColumn.properties.useFirstWidgetLabelAsColumnHeader}">
 <c:choose>
 <c:when test="#{provider.sortable and !empty
layoutColumn.properties.sortPropertyName}">
 <nxu:set var="ascIndex"

value="#{provider.getSortInfoIndex(layoutColumn.properties.sortPropertyName, true)}"
 cache="true">
 <nxu:set var="descIndex"

value="#{provider.getSortInfoIndex(layoutColumn.properties.sortPropertyName, false)}"
 cache="true">
 <h:commandLink immediate="true"

action="#{provider.setSortInfo(layoutColumn.properties.sortPropertyName,
nxu:test(ascIndex != -1, false, true), true)}"
 id="#{layoutColumn.widgets[0].name}_header_sort">
 <h:outputText value="#{layoutColumn.widgets[0].label}"
 rendered="#{!layoutColumn.widgets[0].translated}" />
 <h:outputText value="#{messages[layoutColumn.widgets[0].label]}"
 rendered="#{layoutColumn.widgets[0].translated}" />
 </h:commandLink>
 <f:verbatim>&nbsp;</f:verbatim>
 <c:if test="#{ascIndex != -1}">
 <h:commandLink immediate="true"

action="#{provider.setSortInfo(layoutColumn.properties.sortPropertyName, false,
false)}"
 id="#{layoutColumn.widgets[0].name}_header_sort_desc">
 <h:graphicImage value="/icons/sort_selected_down.png" />
 <c:if test="#{hasSeveralSorts}">
 #{ascIndex + 1}
 </c:if>
 </h:commandLink>
 </c:if>
 <c:if test="#{descIndex != -1}">
 <h:commandLink immediate="true"

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

210
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

action="#{provider.setSortInfo(layoutColumn.properties.sortPropertyName, true,
false)}"
 id="#{layoutColumn.widgets[0].name}_header_sort_asc">
 <h:graphicImage value="/icons/sort_selected_up.png" />
 <c:if test="#{hasSeveralSorts}">
 #{descIndex + 1}
 </c:if>
 </h:commandLink>
 </c:if>
 <c:if test="#{ascIndex == -1 and descIndex == -1}">
 <h:commandLink immediate="true"

action="#{provider.addSortInfo(layoutColumn.properties.sortPropertyName, true)}"
 id="#{layoutColumn.widgets[0].name}_header_sort_add">
 <h:graphicImage value="/icons/sort_down.png" />
 </h:commandLink>
 </c:if>
 </nxu:set>
 </nxu:set>
 </c:when>
 <c:otherwise>
 <h:outputText value="#{layoutColumn.widgets[0].label}"
 rendered="#{!layoutColumn.widgets[0].translated}" />
 <h:outputText value="#{messages[layoutColumn.widgets[0].label]}"
 rendered="#{layoutColumn.widgets[0].translated}" />
 </c:otherwise>
 </c:choose>
 </c:when>
 </c:choose>
 </th>
 </nxl:layoutColumn>
 <c:if test="#{provider.sortable}">
 <th>
 <h:graphicImage value="/icons/lightbulb.png"
 onmouseover="tooltip.show('#{messages['contentview.sort.help']}', 200,
'topleft');"
 onmouseout="tooltip.hide();" />
 </th>
 </c:if>
 </tr>
 </thead>
</c:if>

</nxu:set>

<c:set var="trStyleClass" value="#{nxu:test(layoutListingStatus.index%2 ==0,
'dataRowEven', 'dataRowOdd')}" />
<tr class="#{nxu:test(layout.properties.showRowEvenOddClass, trStyleClass, '')}">
 <nxl:layoutColumn>
 <td class="#{layoutColumn.properties.columnStyleClass}">
 <nxl:layoutColumnWidget>
 <nxl:widget widget="#{widget}" value="#{value}" />
 <c:if test="#{layoutColumn.size > 1 and layoutColumn.size > widgetIndex + 1
and widgetIndex > 0}">

 </c:if>
 </nxl:layoutColumnWidget>
 </td>
 </nxl:layoutColumn>

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

211
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

 <c:if test="#{provider.sortable}">
 <td class="iconColumn">
 </td>
 </c:if>
</tr>

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

212
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

</f:subview>

As you can see, this layout make it possible to use the first defined widget in a given column to print a label, and maybe translate it. It also relies
on properties defined in the layout or layout column properties to handle selection, column style class, sorting on the provider,...

Any custom template can be defined following this example to handle additional properties to display on the final table header and columns.

Custom widget template

The template widget type makes it possible to set a template to use as an include.

Let's have a look at a sample template used to present contributors to a document.

<f:subview xmlns:f="http://java.sun.com/jsf/core"
 xmlns:h="http://java.sun.com/jsf/html"
 xmlns:a4j="https://ajax4jsf.dev.java.net/ajax"
 xmlns:nxu="http://nuxeo.org/nxweb/util"
 xmlns:nxdir="http://nuxeo.org/nxdirectory"
 xmlns:c="http://java.sun.com/jstl/core"
 xmlns:nxp="http://nuxeo.org/nxweb/pdf"
 id="#{widget.id}">
 <div>
 <c:forEach var="username" items="#{field}" varStatus="status">
 <c:if test="#{!status.first}">#{status.last ? andLabel : ', '}</c:if>
 <h:outputText value="#{nxu:userFullName(username)}"
 title="#{username}" onmouseover="tooltip.show(username, 500);"
 onmouseout="tooltip.hide();"/>
 </c:forEach>
 </div>
</f:subview>

This widget presents the contributors of a document with specific links on each on these user identifier information, whatever the widget mode.

Having a widget type just to perform this kind of rendering would be overkill, so using a widget with type "template" can be useful here.

Since 5.4.2, even template widgets should handle the new 'plain' and 'pdf' modes for an accurate rendering of the layout in PDF (content view and
document export) and CSV (content view export). CSV export does not need any specific CSV rendering, so the widget rendering in 'plain' mode
should be enough.

Some helper methods make it easier to check the widget mode, here is the complete current definition of the contributors widget type in Nuxeo.

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

213
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

<f:subview xmlns:f="http://java.sun.com/jsf/core"
 xmlns:h="http://java.sun.com/jsf/html"
 xmlns:a4j="https://ajax4jsf.dev.java.net/ajax"
 xmlns:nxu="http://nuxeo.org/nxweb/util"
 xmlns:nxdir="http://nuxeo.org/nxdirectory"
 xmlns:c="http://java.sun.com/jstl/core"
 xmlns:nxp="http://nuxeo.org/nxweb/pdf"
 id="#{widget.id}">
<c:set var="andLabel" value=" #{messages['label.and']} " scope="page" />
<c:if test="#{nxl:isLikePlainMode(widget.mode)}"><nxu:inputList
 value="#{field}" model="contributorsModel"><h:outputText
 value="#{nxu:userFullName(contributorsModel.rowData)}" /><h:outputText
 rendered="#{contributorsModel.rowIndex != contributorsModel.rowCount -1}"
 value="#{nxu:test(contributorsModel.rowIndex == contributorsModel.rowCount -2,
andLabel, ', ')}" /></nxu:inputList></c:if>
<c:if test="#{widget.mode == 'pdf'}">
 <nxp:html>
 <c:forEach var="username" items="#{field}" varStatus="status">
 <c:if test="#{!status.first}">#{status.last ? andLabel : ', '}</c:if>
 <h:outputText value="#{nxu:userFullName(username)}" />
 </c:forEach>
 </nxp:html>
</c:if>
<c:if test="#{nxl:isLikeViewMode(widget.mode)}">
 <div>
 <c:forEach var="username" items="#{field}" varStatus="status">
 <c:if test="#{!status.first}">#{status.last ? andLabel : ', '}</c:if>
 <h:outputText value="#{nxu:userFullName(username)}"
 title="#{username}" onmouseover="tooltip.show(username, 500);"
 onmouseout="tooltip.hide();"/>
 </c:forEach>
 </div>
</c:if>
</f:subview>

Note that extra spaces have been removed when rendering in the "plain" mode as these spaces may appear on the final rendering (in CSV
columns for instance).

When this template is included in the page, the "widget" variable is made available. For a complete list of available variables, please refer to the E
.L expressions documentation

Some rules must be followed when writing xhtml to be included in templates:

Use the widget id as identifier: the widget id is computed to be unique within the page, so it should be used instead of fixed id attributes
so that another widget using the same template will not introduce duplicated ids in the jsf component tree.
Use the variable with name following the field_n pattern to reference field values. For instance, binding a jsf component value attribute to
#{field_0} means binding it to the first field definition. The expression #{field} is an alias to #{field_0}.

Builtin templates to handle complex properties

List widget template

The standard widget type "list" is actually a widget of type "template" using a static template path: ./widgets/list_widget_template.xhtml
If this default behavior does not suit your needs, you can simply copy this template, make your changes, and use a widget of type "template" with
the new template path.

This template assumes that each element of the list will be displayed using subwidgets definitions.

For instance, to handle a list of String elements, you can use the definition:

http://doc.nuxeo.com/x/GATF
https://doc.nuxeo.com/display/NXDOC54/Manage+layouts#Managelayouts-ELexpressionsinlayoutsandwidgets
https://doc.nuxeo.com/display/NXDOC54/Manage+layouts#Managelayouts-ELexpressionsinlayoutsandwidgets

 Nuxeo Enterprise Platform 5.4 Documentation

214
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

<widget name="contributors" type="list">
 <fields>
 <field>dc:contributors</field>
 </fields>
 <subWidgets>
 <widget name="contributor" type="text">
 <fields>
 <field></field>
 </fields>
 </widget>
 </subWidgets>
</widget>

The empty field definition in the subwidget is used to specify that each element of the list is itself the element to display.

With nuxeo version <= 5.3.0, to handle a list of complex properties (each entry of the list is a map with keys 'name' and 'email' for instance), you
can use the definition:

<widget name="employees" type="list">
 <fields>
 <field>company:employees</field>
 </fields>
 <subWidgets>
 <widget name="employee" type="template">
 <labels>
 <label mode="any"></label>
 </labels>
 <fields>
 <field></field>
 </fields>
 <properties mode="any">
 <property name="template">
 /widgets/complex_widget_template.xhtml
 </property>
 </properties>
 <!-- subwidgets for complex -->
 <subWidgets>
 <widget name="name" type="text">
 <fields>
 <field>name</field>
 </fields>
 </widget>
 <widget name="email" type="text">
 <fields>
 <field>email</field>
 </fields>
 </widget>
 </subWidgets>
 </widget>
 </subWidgets>
</widget>

With nuxeo version > 5.3.0, to handle a list of complex properties (each entry of the list is a map with keys 'name' and 'email' for instance), you
can use the definition:

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

215
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

<widget name="employees" type="list">
 <fields>
 <field>company:employees</field>
 </fields>
 <subWidgets>
 <widget name="employee" type="template">
 <labels>
 <label mode="any"></label>
 </labels>
 <properties mode="any">
 <property name="template">
 /widgets/complex_list_item_widget_template.xhtml
 </property>
 </properties>
 <!-- subwidgets for complex -->
 <subWidgets>
 <widget name="name" type="text">
 <fields>
 <field>name</field>
 </fields>
 </widget>
 <widget name="email" type="text">
 <fields>
 <field>email</field>
 </fields>
 </widget>
 </subWidgets>
 </widget>
 </subWidgets>
</widget>

Complex widget template

A builtin template has been added to handle complex properties. It is available at . It assumes/widgets/complex_widget_template.xhtml
that each element of the complex property will be displayed using subwidgets definitions.

To handle a complex property (the value is a map with keys 'name' and 'email' for instance, you can use the definition:

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

216
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

<widget name="manager" type="template">
 <fields>
 <field>company:manager</field>
 </fields>
 <properties mode="any">
 <property name="template">
 /widgets/complex_widget_template.xhtml
 </property>
 </properties>
 <subWidgets>
 <widget name="name" type="text">
 <fields>
 <field>name</field>
 </fields>
 </widget>
 <widget name="email" type="text">
 <fields>
 <field>email</field>
 </fields>
 </widget>
 </subWidgets>
</widget>

Lists of lists

A builtin template has been added to handle sublists: the original "list" widget is equivalent to a widget of type "template" using the file /widgets
. To handle the sublist, this template needs to be changed. The file is/list_widget_template.xhtml list_subwidget_template.xhtml

available for it since nuxeo version 5.2 GA.

To handle a sublist property, you can use take example on this definition:

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

217
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

<widget name="employees" type="list">
 <fields>
 <field>company:employees</field>
 </fields>
 <subWidgets>
 <widget name="employee" type="template">
 <labels>
 <label mode="any"></label>
 </labels>
 <properties mode="any">
 <property name="template">
 /widgets/complex_list_item_widget_template.xhtml
 </property>
 </properties>
 <!-- subwidgets for complex -->
 <subWidgets>
 <widget name="phoneNumbers" type="template">
 <fields>
 <field>phoneNumbers</field>
 </fields>
 <properties mode="any">
 <property name="template">
 /widgets/list_subwidget_template.xhtml
 </property>
 </properties>
 <subWidgets>
 <widget name="phoneNumber" type="text">
 <label mode="any"></label>
 <fields>
 <field></field>
 </fields>
 </widget>
 </subWidgets>
 </widget>
 </subWidgets>
 </widget>
 </subWidgets>
</widget>

Custom widget types

Custom widget types can be added to the standard list thanks to another extension point on the web layout service.

Usually widget types are template widgets that are declared as widget types to make them easily reusable in different layouts, have a clear widget
types library, and make them available in Studio.

Simple widget type registration

Here is a sample widget type registration, based on a widget template:

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

218
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

<component name="org.nuxeo.ecm.platform.forms.layout.MyContribution">

 <extension target="org.nuxeo.ecm.platform.forms.layout.WebLayoutManager"
 point="widgettypes">

 <widgetType name="my_widget_type">
 <handler-class>
 org.nuxeo.ecm.platform.forms.layout.facelets.plugins.TemplateWidgetTypeHandler
 </handler-class>
 <property name="template">
 /widgets/my_own_widget_template.xhtml
 </property>
 </widgetType>

 </extension>

</component>

Before this contribution, the widgets needing this template were declaring (for instance):

<widget name="my_widget" type="template">
 <labels>
 <label mode="any">My label</label>
 </labels>
 <translated>false</translated>
 <fields>
 <field>dc:description</field>
 </fields>
 <properties widgetMode="any">
 <property name="template">/widgets/my_own_widget_template.xhtml</property>
 </properties>
</widget>

With this configuration, the following widget definition can now be used:

<widget name="my_widget" type="my_widget_type">
 <labels>
 <label mode="any">My label</label>
 </labels>
 <translated>false</translated>
 <fields>
 <field>dc:description</field>
 </fields>
</widget>

Complex widget type registration

Here is a more complex sample widget type registration:

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

219
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

<?xml version="1.0"?>

<component name="org.nuxeo.ecm.platform.forms.layout.MyContribution">

 <extension target="org.nuxeo.ecm.platform.forms.layout.WebLayoutManager"
 point="widgettypes">

 <widgetType name="customtype">
 <handler-class>
 org.myproject.MyCustomWidgetTypeHandler
 </handler-class>
 <property name="foo">bar</property>
 </widgetType>

 </extension>

</component>

The custom widget type class must follow the interface.org.nuxeo.ecm.platform.forms.layout.facelets.WidgetTypeHandler

Additional properties can be added to the type registration so that the same class can be reused with a different behavior given the property
value.

The widget type handler is used to generate facelet tag handlers dynamically taking into account the mode, and any other properties that can be
found on a widget.

The best thing to do before writing a custom widget type handler is to go see how standard widget type handlers are implemented, as some
helper methods can be reused to ease implementation of specific behaviors.

Additional widget type configuration

Some additional information can be put on a widget type for several purposes:

configuration of widgets made available in Studio

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

220
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

documentation of available layouts and widget types on a given Nuxeo instance (see on your Nuxeo instance: http://localhost:nuxeo/site/l
)ayout/

http://doc.nuxeo.com/x/GATF
http://localhost:nuxeo/site/layout/
http://localhost:nuxeo/site/layout/

 Nuxeo Enterprise Platform 5.4 Documentation

221
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

Sample JSON export URLs:

http://localhost:8080/nuxeo/site/layout/widgets/widgetTypes/documen
t

all widget types with category "document"

http://localhost:8080/nuxeo/site/layout/widgets/widgetTypes/documen
t?version=5.4.0

all widget types with category "document", filtering widget types with
a version strictly higher than 5.4.0

documentation and showcase of this widget type (see)http://layout.demo.nuxeo.org

Here is a sample configuration extract:

<widgetType name="text">
 <configuration>
 <title>Text</title>

http://doc.nuxeo.com/x/GATF
http://localhost:8080/nuxeo/site/layout/widgets/widgetTypes/document
http://localhost:8080/nuxeo/site/layout/widgets/widgetTypes/document
http://localhost:8080/nuxeo/site/layout/widgets/widgetTypes/document?version=5.4.0
http://localhost:8080/nuxeo/site/layout/widgets/widgetTypes/document?version=5.4.0
http://layout.demo.nuxeo.org

 Nuxeo Enterprise Platform 5.4 Documentation

222
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

 <description>
 <p>
 The text widget displays an input text in create or edit mode, with
 additional message tag for errors, and a regular text output in any
 other mode.
 </p>
 <p>
 Widgets using this type can provide properties accepted on a
 <h:inputText /> tag in create or edit mode, and properties
 accepted on a <h:outputText /> tag in other modes.
 </p>
 </description>
 <demo id="textWidget" previewEnabled="true" />
 <supportedModes>
 <mode>edit</mode>
 <mode>view</mode>
 </supportedModes>
 <fields>
 <list>false</list>
 <complex>false</complex>
 <supportedTypes>
 <type>string</type>
 <type>path</type>
 </supportedTypes>
 <defaultTypes>
 <type>string</type>
 </defaultTypes>
 </fields>
 <categories>
 <category>document</category>
 </categories>
 <properties>
 <layouts mode="view">
 <layout name="text_widget_type_properties_view">
 <rows>
 <row>
 <widget>style</widget>
 </row>
 <row>
 <widget>styleClass</widget>
 </row>
 [...]
 </rows>
 <widget name="style" type="text">
 <labels>
 <label mode="any">Style</label>
 </labels>
 <fields>
 <field>style</field>
 </fields>
 </widget>
 <widget name="styleClass" type="text">
 <labels>
 <label mode="any">Style class</label>
 </labels>
 <fields>
 <field>styleClass</field>
 </fields>
 </widget>

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

223
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

 [...]
 </layout>
 </layouts>
 <layouts mode="edit">
 <layout name="text_widget_type_properties_edit">
 <rows>
 <row>
 <widget>required</widget>
 </row>
 <row>
 <widget>maxlength</widget>
 </row>
 <row>
 <widget>title</widget>
 </row>
 [...]
 </rows>
 <widget name="maxlength" type="int">
 <labels>
 <label mode="any">Max length</label>
 </labels>
 <fields>
 <field>maxlength</field>
 </fields>
 </widget>
 <widget name="required" type="checkbox">
 <labels>
 <label mode="any">Required</label>
 </labels>
 <fields>
 <field>required</field>
 </fields>
 </widget>
 <widget name="title" type="text">
 <labels>
 <label mode="any">Title</label>
 </labels>
 <fields>
 <field>title</field>
 </fields>
 <widgetModes>
 <mode value="any">hidden</mode>
 <mode value="view_reference">view</mode>
 </widgetModes>
 </widget>
 [...]
 </layout>
 </layouts>
 </properties>
 </configuration>
 <handler-class>
 org.nuxeo.ecm.platform.forms.layout.facelets.plugins.TextWidgetTypeHandler

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

224
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

 </handler-class>
</widgetType>

The "configuration" element is optional, but when defined it'll be used to define the following information:

title: the widget type title
description: the widget type description, that accepts HTML content
demo: this refers to this widget type representation in the layout demo (see the online demo, for instance http://layout.demo.nuxeo.org/nu

)xeo/layoutDemo/textWidget
supportedModes: the list of supported modes (for instance some widget types are read-only). This is useful for Studio configuration: if the
edit mode is not available, the corresponding panel for properties configuration will not be shown.
fields: this configuration is subject to change, but it is currently used to define what kind of widgets types are available for a given field
type.
categories: list of categories for this widget type. This is a marker for display and it can also be used to facilitate exports. The default
categories are "document", "summary", "listing" and "dev".
properties: the layouts to use to display the available widget properties depending on the mode. This is a standard layout configuration,
using the property name as field. Properties hidden in the mode "view_reference" will only be displayed on the reference table, and will
not be displayed for configuration in Studio or preview in the Layout showcase.

Generic layout usage

Layouts can be used with other kind of objects than documents.

The field definition has to match a document property for which setters and getters will be available, or the "value" property must be passed
explicitely for the binding to happen. Depending on the widget, other kinds of bindings can be done.

Content views

Definition

A content view is a notion to define all the elements needed to get a list of items and perform their rendering. The most obvious use case is the
listing of a folderish document content, where we would like to be able to:

define the NXQL query that will be used to retrieve the documents, filtering some of them (documents in the trash for instance)
pass on contextual parameters to the query (the current container identifier)
define a filtering form to refine the query
define what columns will be used for the rendering of the list, and how to display their content
handle selection of documents, and actions available when selecting them (copy, paste, delete...)
handle sorting and pagination
handle caching, and refresh of this cache when a document is created, deleted, modified...

The Nuxeo Content View framework makes it possible to define such an object, by registering content views to the service. Here is a sample
contribution, that will display the children of the current document:

Content views are available in Nuxeo since version 5.4.

http://doc.nuxeo.com/x/GATF
http://layout.demo.nuxeo.org/nuxeo/layoutDemo/textWidget
http://layout.demo.nuxeo.org/nuxeo/layoutDemo/textWidget

 Nuxeo Enterprise Platform 5.4 Documentation

225
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

<extension target="org.nuxeo.ecm.platform.ui.web.ContentViewService"
 point="contentViews">

 <contentView name="document_content">

 <coreQueryPageProvider>
 <property name="coreSession">#{documentManager}</property>
 <pattern>
 SELECT * FROM Document WHERE ecm:parentId = ?
 AND ecm:isCheckedInVersion = 0
 AND ecm:mixinType != 'HiddenInNavigation'
 AND ecm:currentLifeCycleState != 'deleted'
 </pattern>
 <parameter>#{currentDocument.id}</parameter>
 <sort column="dc:title" ascending="true" />
 <pageSize>20</pageSize>
 </coreQueryPageProvider>

 <cacheKey>#{currentDocument.id}</cacheKey>
 <cacheSize>10</cacheSize>
 <refresh>
 <event>documentChanged</event>
 <event>documentChildrenChanged</event>
 </refresh>

 <resultLayouts>
 <layout name="document_listing_ajax" title="document_listing"
 translateTitle="true" iconPath="/icons/document_listing_icon.png"
 showCSVExport="true" showPDFExport="true" />
 <layout name="document_listing_ajax_compact_2_columns"
 title="document_listing_compact_2_columns"
 translateTitle="true"
 iconPath="/icons/document_listing_compact_2_columns_icon.png" />
 <layout name="document_listing_ajax_icon_2_columns"
 title="document_listing_icon_2_columns"
 translateTitle="true"
 iconPath="/icons/document_listing_icon_2_columns_icon.png" />
 </resultLayouts>

 <selectionList>CURRENT_SELECTION</selectionList>
 <actions category="CURRENT_SELECTION_LIST" />

 </contentView>

</extension>

The content view query

The "coreQueryPageProvider" element makes it possible to define whet query will be performed. Here it is a query on a core session, using a
pattern with one parameter.

This element accepts any number of property elements, defining needed context variables for the page provider to perform its work. The
"coreSession" property is mandatory for a core query to be processed and is bound to the core session proxy named "documentManager"
available in a default Nuxeo application.

The main difference between properties and parameters is that properties will not be recomputed when refreshing the provider, whereas
parameters will be. Properties will only be recomputed when resetting the provider.

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

226
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

This element also accepts any number of "parameter" elements, where order of definition matters: this EL expression will be resolved when
performing the query, replacing the '?' characters it holds.

The "sort" element defines the default sort, that can be changed later through the interface. There can be any number of "sort" elements. The
"sortInfosBinding" element can also be defined: it can resolve an EL expression in case the sort infos are held by a thirs party instance
(document, seam component...) and will be used instead of the default sort information if not null or empty. The EL expression can either resolve
to a list of instances, or a list of map items using keys "sortColumn" (with a String value) andorg.nuxeo.ecm.core.api.SortInfo
"sortAscending" (with a boolean value).

The "pageSize" element defines the default page size, it can also be changed later. The "pageSizeBinding" element can also be defined: it can
resolve an EL expression in case the page size is held by a third party instance (document, seam component...), and will be used instead of the
default page size if not null.

The optional "maxPageSize" element can be placed at the same level than "pageSize" and is available since version 5.4.2. It makes it possible to
define the maximum page size so that the content view does not overload the server when retrieving a large number of items. When not set, the
default value "100" will be used: even when asking for all the results with a page size with value "0" (when exporting the content view in CSV
format for instance), only 100 items will be returned.

This kind of core query can also perform a more complex form of query, using a document model to store query parameters. Using a document
model makes it easy to :

use a layout to display the form that will define query parameters
save this document in the repository, so that the same query can be replayed when viewing this document

Here is an example of such a registration:

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

227
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

<extension target="org.nuxeo.ecm.platform.ui.web.ContentViewService"
 point="contentViews">

 <contentView name="document_content_filter">

 <coreQueryPageProvider>
 <property name="coreSession">#{documentManager}</property>
 <whereClause docType="AdvancedSearch">

 <predicate parameter="dc:title" operator="FULLTEXT">
 <field schema="advanced_search" name="title" />
 </predicate>

 <predicate parameter="dc:created" operator="BETWEEN">
 <field schema="advanced_search" name="created_min" />
 <field schema="advanced_search" name="created_max" />
 </predicate>

 <predicate parameter="dc:modified" operator="BETWEEN">
 <field schema="advanced_search" name="modified_min" />
 <field schema="advanced_search" name="modified_max" />
 </predicate>

 <predicate parameter="dc:language" operator="LIKE">
 <field schema="advanced_search" name="language" />
 </predicate>

 <predicate parameter="ecm:currentLifeCycleState" operator="IN">
 <field schema="advanced_search" name="currentLifeCycleStates" />
 </predicate>

 <fixedPart>
 ecm:parentId = ? AND ecm:isCheckedInVersion = 0 AND ecm:mixinType !=
 'HiddenInNavigation' AND ecm:currentLifeCycleState != 'deleted'
 </fixedPart>

 </whereClause>
 <parameter>#{currentDocument.id}</parameter>
 <sort column="dc:title" ascending="true" />
 <pageSize>20</pageSize>
 </coreQueryPageProvider>

 <searchLayout name="document_content_search" />

 ...

</extension>

This definition holds a "whereClause" element, stating the search document type and predicates explaining how the document model properties
will translated into a NXQL query. It can also state a "fixedPart" element that will added as to the query string. This fixed part can also take
parameters using the '?' character and "parameter" elements.

The "searchLayout" element defines what layouts needs to be used when rendering the search document model: it will be in charge of displaying
the search form. Since 5.4.2, the "showFilterForm" element makes it possible to show this form above the content view results.

Since 5.4.2, the "searchDocument" variable can be used in EL expressions to bind the page size, the sort infos and the result columns
to the search document properties.

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

228
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

The content view cache

The "cacheKey" element, if filled, will make it possible to keep content views in cache in the current conversation. It accepts EL expressions, but a
fixed cache key can be used to cache only one instance.

Caching only one instance is useful as several features may need to retrieve information from a given content view. When caching only one
instance, setting the "cacheSize" element to more than "1" is useless: in the example, 10 instances of content views with a different cache key will
be kept in cache. When the 11th entry, with a new cache key, is generated, the first content view put in the cache will be removed, and will need
to be re-generated again.

If a cache key is given, but no cache size is set, "5" will be used by default. Using "0" means no caching at all.

The "refresh" cache makes it possible to refresh this content view when receiving the listed Seam event names. Only "documentChanged" and
"documentChildrenChanged" are handled by default, but it is possible to react to new events by adding a method with an observer on this event
on a custom Seam component, and call the method "contentViewActions.refreshOnSeamEvent(String seamEventName)".

This cache configuration will make it possible to navigate to 10 different folderish document pages, and keep the current page, the current sort
information, and current result layout.

The content view result layouts

The result layouts control the display of resulting documents. It states different kinds of rendering so that it's possible to switch between them.
They also accept a title and an icon, useful for rendering.

The layout configuration is stanadard and has to follow listing layouts configuration standards. The layout template, as well as widgets displaying
selection checkboxes, need to perform an Ajax selection of documents, and re-render the action buttons region.

The content view selection list

The "selectionList" element will be used to fill the document list with given name.

Selection is done through ajax, so that selection is not lost when not performing any action thanks to this selection.

The content view actions

The "actions" element can be repeated any number of times: it states the actions category to use to display buttons applying to this table ("copy",
"paste", "delete",...). Each "actions" element will generate a new row of buttons.

These actions will be displayed under the table in default templates, and will be re-rendered when selecting an item of the table so that they are
enabled or disabled. this is performed using adequate filters, performing checks on selected items.

Additional configuration

The "searchDocument" element can be filled on a content view using an EL expression: it will be used as the search document model. Otherwise,
a bare document will be generated using the document type by the "contentViewActions" seam component.

The "resultColumns" element can be filled on a content view using an EL expression: it will be used to resolve the list of selected columns for the
current result layout. If several result layouts are defined, they should be configured so that their rows are always selected in case the selected
column names do not match theirs.

Additional rendering information can also be set, to be used by templates when rendering the content view:

The selection actions rely on the cached content view to retrieve documents from the list, so using a cache of size "0" will make these
actions fail: a cache of at least 1 is required. If caching options are not enough for you to force refresh, it is also possible to force the
refresh at rendering, for instance by calling contentView#refreshPageProvider in the xhtml template.

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

229
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

<contentView name="CURRENT_DOCUMENT_CHILDREN">
 <title>label.current.document.children</title>
 <translateTitle>true</translateTitle>
 <iconPath>/icons/document_listing_icon.png</iconPath>
 <emptySentence>label.content.empty.search</emptySentence>
 <translateEmptySentence>true</translateEmptySentence>
 <translateEmptySentence>true</translateEmptySentence>
 <showPageSizeSelector>true</showPageSizeSelector>
 <showRefreshCommand>true</showRefreshCommand>

...
</contentView>

The element "showTitle" is available since version 5.4.2. It can be used to define a title for the content view, without displaying it on the default
rendering. It can also be used when exporting the content view in CSV format, for instance.

The elements "emptySentence" and "translateEmptySentence" are available since version 5.4.2. They are used to display the message stating
that there are no elements in the content view.

The elements "showPageSizeSelector" and "showRefreshCommand" are available since version 5.4.2. They are used to control the display of the
page size selector, and of the "refresh current page" button. They both default to true.

Caching

The caching will take effect when using the "contentViewActions" bean. Although the cache key, cache size and events allow to perform the most
common use cases, it is sometimes useful to call this bean methods directly when forcing a refresh.

Refresh will keep current settings, and will force the query to be done again. Reset will delete content views completely from the cache, and force
complete re-generation of the content view, its provider, and the search document model if set.

Document content views

It is possible to define content views on a document type. This makes it easier to define folderish documents views.

Here is the default configuration of content views for Nuxeo folderish documents:

<type id="Folder">
 <label>Folder</label>
 ...
 <contentViews category="content">
 <contentView>document_content</contentView>
 </contentViews>
 <contentViews category="trash_content">
 <contentView showInExportView="false">document_trash_content</contentView>
 </contentViews>
</type>

The "document_content" content view will be displayed on this folder default view, and the "document_trash_content" content view will be
displayed on the trash tab.

The "category" attribute is filled from xhtml templates to render all content views defined in a given category.

The "showInExportView" attribute is used to check whether this content view should be displayed in the document export view (and PDF export)

If several content views are filled in the same category, both will be displayed on the same page.

Rendering

Rendering is done using methods set on Generic Seam components: "contentViewActions" (org.nuxeo.ecm.webapp.contentbrowser.Con

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

230
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

) and "documentContentViewActions" ()tentViewActions org.nuxeo.ecm.webapp.contentbrowser.DocumentContentViewActions
to handle document content views categories.

A typical usage of content views, to render the results, would be:

<nxu:set var="contentViewName" value="my_content_view_name">

 <ui:decorate template="/incl/content_view.xhtml" />

</nxu:set>

The template handles generic rendering of the given content view (content view title, pagination, result layout/incl/content_view.xhtml
selection, list rendering, actions rendering) . It inserts names region that can be overriden when using the "ui:decorate" tag.

The current version of this template is here: http://hg.nuxeo.org/nuxeo/nuxeo-jsf/file/5.4/nuxeo-platform-webapp-base/src/main/resources/web/nu
xeo.war/incl/content_view.xhtml

Here is the sample rendering of the search form defined on a content view named "document_content_filter":

<nxu:set var="contentView"
 value="#{contentViewActions.getContentViewWithProvider('document_content_filter')}"
 cache="true">
 <c:if test="#{contentView != null}">
 <nxl:layout name="#{contentView.searchLayout.name}" mode="edit"
 value="#{contentView.searchDocumentModel}" />
 </c:if>
</nxu:set>

Here is a typical way of refreshing or resetting a provider named "advanced_search" from the interface:

<div>
 <h:commandButton value="#{messages['command.search']}"
 action="search_results_advanced"
 styleClass="button">
 <nxu:actionListenerMethod value="#{contentViewActions.refresh('advanced_search')}"
/>
 </h:commandButton>
 <h:commandButton value="#{messages['command.clearSearch']}"
 action="#{contentViewActions.reset('advanced_search')}"
 immediate="true"
 styleClass="button" />
</div>

Custom Page Providers

This chapter focuses on writing custom page providers, for instance when you'd like to use content views to query and display results from an
external system. For an introduction to content views, please refer to the chapter.Content Views

Page providers configuration

The element makes it possible to answer to most common use cases. If you would like to use another kind of<coreQueryPageProvider>
query, you can use an alternate element and specify the class to use.PageProvider

Here is a sample example of a custom page provider configuration:

http://doc.nuxeo.com/x/GATF
http://hg.nuxeo.org/nuxeo/nuxeo-jsf/file/5.4/nuxeo-platform-webapp-base/src/main/resources/web/nuxeo.war/incl/content_view.xhtml
http://hg.nuxeo.org/nuxeo/nuxeo-jsf/file/5.4/nuxeo-platform-webapp-base/src/main/resources/web/nuxeo.war/incl/content_view.xhtml

 Nuxeo Enterprise Platform 5.4 Documentation

231
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

<extension target="org.nuxeo.ecm.platform.ui.web.ContentViewService"
 point="contentViews">

 <contentView name="CURRENT_DOCUMENT_CHILDREN_FETCH">
 <genericPageProvider
 class="org.nuxeo.ecm.platform.query.nxql.CoreQueryAndFetchPageProvider">
 <property name="coreSession">#{documentManager}</property>
 <pattern>
 SELECT dc:title FROM Document WHERE ecm:parentId = ? AND
 ecm:isCheckedInVersion = 0 AND ecm:mixinType != 'HiddenInNavigation'
 AND ecm:currentLifeCycleState != 'deleted'
 </pattern>
 <parameter>#{currentDocument.id}</parameter>
 <sort column="dc:title" ascending="true" />
 <pageSize>2</pageSize>
 </genericPageProvider>

 ...
 </contentView>

</extension>

The element takes an additional attribute stating the page provider class. This class has to follow the <genericPageProvider> class org.nu
 interface and does not need to list document models: content views do not force the item type to a givenxeo.ecm.core.api.PageProvider

interface. The abstract class makes it easier to define a new page provider as itorg.nuxeo.ecm.core.api.AbstractPageProvider
implements most of the interface methods in a generic way.

As result layouts can apply to other objects than document models, their definition can be adapted to fit to the kind of results provided by the
custom page provider.

In the given example, another kind of query will be performed on a core session, and will return a list of maps, each map holding the "dc:title" key
and corresponding value on the matching documents.

The element accepts all the other configurations present on the element: it is up to<genericPageProvider> <coreQueryPageProvider>
the implementation to use them to build its query or not. It can also perform its own caching.PageProvider

The properties can be defined as EL expressions and make it possible for the query provider to have access to contextual information. In the
above example, the core session to the Nuxeo repository is taken from the Seam context and passed as the property with name "coreSession".

Page Providers without Content Views

Content views are very linked to the UI rendering as they hold pure UI configuration and need the JSF context to resolve variables. Sometimes it
is interesting to retrieve items using page providers, but in a non-UI context (event listener), or in a non-JSF UI context (webengine).

Page providers can be registered on their own service, and queried outside of a JSF context. These page providers can also be referenced from
content views, to keep a common definition of the provider.

Here is a sample page provider definition:

Page providers are available in Nuxeo since version 5.4.

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

232
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

<extension target="org.nuxeo.ecm.platform.query.api.PageProviderService"
 point="providers">

 <coreQueryPageProvider name="TREE_CHILDREN_PP">
 <pattern>
 SELECT * FROM Document WHERE ecm:parentId = ? AND ecm:isProxy = 0 AND
 ecm:mixinType = 'Folderish' AND ecm:mixinType != 'HiddenInNavigation'
 AND ecm:isCheckedInVersion = 0 AND ecm:currentLifeCycleState !=
 'deleted'
 </pattern>
 <sort column="dc:title" ascending="true" />
 <pageSize>50</pageSize>
 </coreQueryPageProvider>

</extension>

This definition is identical to the one within a content view, except it cannot use EL expressions for variables resolution. A typical usage of this
page provider would be:

PageProviderService ppService = Framework.getService(PageProviderService.class);
Map<String, Serializable> props = new HashMap<String, Serializable>();
props.put(CoreQueryDocumentPageProvider.CORE_SESSION_PROPERTY,
 (Serializable) coreSession);
PageProvider<DocumentModel> pp = (PageProvider<DocumentModel>)
ppService.getPageProvider(
 "TREE_CHILDREN_PP", null, null, null, props,
 new Object[] { myDoc.getId() });
List<DocumentModel> documents = pp.getCurrentPage();

Here you can see that the page provider properties (needed for the query to be executed) and its parameters (needed for the query to be built)
cannot be resolved from EL expressions: they need to be given explicitely to the page provider service.

A typical usage of this page provider, referenced in a content view, would be:

<extension target="org.nuxeo.ecm.platform.ui.web.ContentViewService"
 point="contentViews">

 <contentView name="TREE_CHILDREN_CV">
 <title>tree children</title>

 <pageProvider name="TREE_CHILDREN_PP">
 <property name="coreSession">#{documentManager}</property>
 <property name="checkQueryCache">true</property>
 <parameter>#{currentDocument.id}</parameter>
 </pageProvider>

 </contentView>

</extension>

Here you can see that properties and parameters can be put on the referenced page provider as content views all have a JSF context.

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

233
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

Views on documents

First of all, we have to make the difference between a view in a standard JSF way (navigation case view id, navigation case output) and views in
Nuxeo EP (document type view, creation view)

Standard JSF navigation concepts

A standard JSF navigation rule can be defined in the files, inside the faces-config#NAVIGATIONOSGI-INF/deployment-fragment.xml
directive.

Example of a navigation rule case definitions:

<extension target="faces-config#NAVIGATION">

 <navigation-case>
 <from-outcome>create_document</from-outcome>
 <to-view-id>/create_document.xhtml</to-view-id>
 <redirect />
 </navigation-case>

 <navigation-case>
 <from-outcome>view_documents</from-outcome>
 <to-view-id>/view_documents.xhtml</to-view-id>
 <redirect />
 </navigation-case>

</extension>

Nuxeo EP views

A certain Nuxeo document type, can have defined a default view (used to view/edit the document) and a create view (used to create the
document). These views are specified in the file, as in the following example.OSGI-INF/ecm-types-contrib.xml

<extension target="org.nuxeo.ecm.platform.types.TypeService" point="types">
 <type id="Workspace">
 <label>Workspace</label>
 <icon>/icons/workspace.gif</icon>
 <icon-expanded>/icons/workspace_open.gif</icon-expanded>
 <default-view>view_documents</default-view>
 <create-view>create_workspace</create-view>
 </type>
</extension>

The default view of a document is rendered as a list of tabs. As mentioned before, the document tabs are defined as actions in the OSGI-INF/ac
 file, having as category VIEW_ACTION_LIST. A tab can be added to a document default view as shown in the followingtions-contrib.xml

example.

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

234
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

<extension target="org.nuxeo.ecm.platform.actions.ActionService" point="actions">
 <action id="TAB_EDIT" link="/incl/tabs/document_edit.xhtml" enabled="true"
 order="20" label="action.view.edit" icon="/icons/file.gif">
 <category>VIEW_ACTION_LIST</category>
 <filter-id>edit</filter-id>
 <filter-id>mutable_document</filter-id>
 </action>
</extension>

Versioning
This section describes the versioning model of Nuxeo EP 5.4.

Concepts

Placeful. A placeful document is one which is stored in a folder, and therefore has a parent in which it is visible as a child.
Placeless. A placeless document isn't stored in a given folder, it's just available in the storage through its id. Having no parent folder it
doesn't inherit any security, so it is usually only accessible by unrestricted code.
Working Copy. The document that you edit. It is usually stored in a Workspace's folder but this is just convention. It is also often called
the . There is at most one Working Copy per version series. In other systems it is also called the Private Working CopyLive Document
because only the user that created it can work on it; this is looser in Nuxeo EP.
Version. An immutable, archived version of a document. It is created from a by a operation.working copy check in
Version Number. The label which is uniquely attached to a version. It formed of two integers separated by a dot, like "2.1". The first
integer is the major version number, the second one is the minor version number.
Major Version. A version whose minor version number is 0. It follows that a minor version is a version whose minor version number is
not 0.
Version Series. The list of versions that have been successively created from an initial . The version series id is a uniqueworking copy
identifier that is shared by the working copy and all the versions of the version series.
Versionable Document. The document which can be versioned, in effect the . Up to Nuxeo EP 5.4, the versionableworking copy
document id is used as the version series id.
Check In. The operation by which a new is created from a .version working copy
Check Out. The operation by which a is made available.working copy

Check In and Check Out

"Check In" and "Check Out" in Nuxeo EP both refer to operations that can be carried out on documents, and to the state a working copy can be
in.

Checked In and Checked Out states

A working copy in the Checked Out state can be modified freely by users having access rights to the document. A document ceases to be
Checked Out when the Check In operation is invoked. After initial creation a document is in the Checked Out state.

A working copy in the Checked In state is identical to the version that was created when the Check In operation was invoked on the working copy.
In the Checked In state, a working copy is (at low level) not modifiable. To be modified it must be switched to the Checked Out state first. This
latter operation is automatically done in Nuxeo EP 5.4 when a document is modified.

Check In and Check Out operations

From a working copy in the Checked Out state, invoking the Check In operation does several things:

the final version number is determined,
a new version is created,
the working copy is placed in the Checked In state.

When invoking the Check In operation, a flag is passed to indicate whether a major version or a minor version should be created. Depending on
whether the new version should be major or minor, the version number is incremented differently; for instance, starting from a working copy with
the version number "2.1" (displayed as "2.1+"), a minor version would be created as "2.2" and a major version as "3.0".

Given a Checked In working copy, invoking the Check Out operation has little visible effect, it's just a state change for the working copy. A "+" is
displayed after the version number to make this apparent, see below.

In other systems than Nuxeo EP, the Check In operation that creates a new version removes the Working Copy, whose role has been

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

235
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

Version number

The initial version number of a freshly created working copy is "0.0".

When displaying the version number for a Checked Out document, the version number is usually displayed with a "+" following it, to show that it's
not the final version number but that the working copy is modified and derived from that version. The final version number will be determined at
Check In time. The exception to this display rule is the version "0.0", because displaying "0.0+" would be redundant and misleading as there is
actually no previously archived "0.0" version from which it is derived.

The version number is changed by a Check In operation; either the minor version number is incremented, or the major version number is
incremented and the minor version number is set to 0.

Plugging in a new implementationVersioningService

For advanced uses, it's possible to plug in a new implementation to define what happens at creation, save, check in andVersioningService
check out time. See the and the documentation for more about this.Javadoc versioningService extension point

User Actions (links, buttons, icons, tabs)
In this chapter, an action will stand for any kind of command that can be triggered via user interface interaction. In other words, it will describe a
link and other information that may be used to manage its display (the link label, an icon, security information for instance).

Custom actions can be contributed to the actions service, using its extension point. Their description is then available through this service to
control where and how they will be displayed.

Register a new action

An action can be registered using the following example extension:

<extension target="org.nuxeo.ecm.platform.actions.ActionService"
 point="actions">

 <action id="logout" link="#{loginLogoutAction.logout}"
 label="command.logout">
 <category>USER_SERVICES</category>
 </action>

</extension>

The above action will be used to display a "logout" link on the site. Here are its properties:

id: string identifying the action. In the example, the action id is "logout".
label: the action name that will be used when displaying the link. In the example, the label is "command.logout". This label is a message
that will be translated at display.
link: string representing the command the action will trigger. This string may represent a different action given the template that will
display the action. In the example, a JSF command link will be used, so it represents an action method expression. The seam component
called "loginLogoutAction" holds a method named "logout" that will perform the logout and return a string for navigation.
category: a string useful to group actions that will be rendered in the same area of a page. An action can define several categories. Here,
the only category defined is "USER_SERVICES". It is designed to group all the actions that will be displayed on the right top corner of
any page of the site.

Other properties can be used to define an action. They are listed here but you can have a look at the main actions contributions file for more
examples: nuxeo-platform-webapp-core/srs/main/resources/OSGI-INF/actions-contrib.xml.

filter-ids: id of a filter that will be used to control the action visibility. An action can have several filters: it is visible if all its filters grant the
access.
filter: a filter definition can be done directly within the action definition. It is a filter like others and can be referred by other actions.
icon: the optional icon path for this action.
confirm: an optional Javascript confirmation string that can be triggered when executing the command.
order: an optional integer used to sort actions within the same category. This attribute may be deprecated in the future.
enabled: boolean indicating whether the action is currently active. This can be used to hide existing actions when customizing the site

fulfilled. This is not the case in Nuxeo EP, where the Working Copy remains in a special Checked In state. In these other systems, the
Check Out operation can also be invoked on a Version to create a new Working Copy (this assumes that there is no pre-existing
Working Copy in the system). This kind of operation will be made available in future versions of Nuxeo EP but is not present at the
moment.

http://doc.nuxeo.com/x/GATF
http://www.nuxeo.org/api/nuxeo/5.4/javadoc/org/nuxeo/ecm/core/versioning/VersioningService.html
http://www.nuxeo.org/api/nuxeo/5.4/javadoc/org/nuxeo/ecm/core/versioning/VersioningService.html
http://explorer.nuxeo.org/nuxeo/site/distribution/Nuxeo%20DM-5.4.0/viewExtensionPoint/org.nuxeo.ecm.core.versioning.VersioningService--versioningService

 Nuxeo Enterprise Platform 5.4 Documentation

236
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

behavior.

Actions extension point provides merging features: you can change an existing action definition in your custom extension point provided you use
the same identifier. Properties holding single values (label, link for instance) will be replaced using the new value. Properties holding multiple
values (categories, filters) will be merged with existing values.

Manage category to display an action at the right place

Actions in the same category are supposed to be displayed in the same area of a page. Here are listed the main default categories if you want to
add an action there:

USER_SERVICES: used to display actions in the top right corner of every page. The link attribute should look like a JSF action command
link. See the example above.
VIEW_ACTION_LIST: used for tabs displayed on every document. As each tab is not displayed in a different page, but just includes a
specific template content in the middle of the page, the link attribute has to be a template path. For instance:

 <action id="TAB_VIEW" link="/incl/tabs/document_view.xhtml" enabled="true"
 order="0" label="action.view.summary">
 <category>VIEW_ACTION_LIST</category>
 <filter-id>view</filter-id>
 </action>

 <action id="TAB_CONTENT" link="/incl/tabs/document_content.xhtml" order="10"
 enabled="true" label="action.view.content">
 <category>VIEW_ACTION_LIST</category>
 <filter-id>view_content</filter-id>
 </action>

SUBVIEW_UPPER_LIST: used to display actions just below a document tabs listing. As USER_SERVICES, these actions will be
displayed using a command link, so the link attribute has to be an action method expression. For instance:

 <action id="newSection" link="#{documentActions.createDocument('Section')}"
 enabled="true" label="command.create.section"
 icon="/icons/action_add.gif">
 <category>SUBVIEW_UPPER_LIST</category>
 <filter id="newSection">
 <rule grant="true">
 <permission>AddChildren</permission>
 <type>SectionRoot</type>
 </rule>
 </filter>
 </action>

 <action id="newDocument" link="select_document_type" enabled="true"
 label="action.new.document" icon="/icons/action_add.gif">
 <category>SUBVIEW_UPPER_LIST</category>
 <filter-id>create</filter-id>
 </action>

Manage filters to control an action visibility

An action visibility can be controlled using filters. An action filter is a set of rules that will apply - or not - given an action and a context.

Filters can be registered using their own extension point, or registered implicitly when defining them inside of an action definition.

Example of a filter registration:

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

237
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

<filter id="view_content">
 <rule grant="true">
 <permission>ReadChildren</permission>
 <facet>Folderish</facet>
 </rule>
 <rule grant="false">
 <type>Root</type>
 </rule>
</filter>

Example of a filter registration inside an action registration

<action id="newSection" link="#{documentActions.createDocument('Section')}"
 enabled="true" label="command.create.section"
 icon="/icons/action_add.gif">
 <category>SUBVIEW_UPPER_LIST</category>
 <filter id="newSection">
 <rule grant="true">
 <permission>AddChildren</permission>
 <type>SectionRoot</type>
 </rule>
 </filter>
</action>

A filter can accept any number of rules. It will grant access to an action if, among its rules, no denying rule (grant=false) is found and at least one
granting rule (grant=true) is found. A general rule to remember is that if you would like to add a filter to an action that already has one or more
filters, it has to hold constraining rules: a granting filter will be ignored if another filter is already too constraining.

If no granting rule (grant=true) is found, the filter will grant access if no denying rule is found. If no rule is set, the filter will grant access by default.

The default filter implementation uses filter rules with the following properties:

grant: boolean indicating whether this is a granting rule or a denying rule.
permission: permission like "Write" that will be checked on the context for the given user. A rule can hold several permissions: it applies if
user holds at least one of them.
facet: facet like "Folderish" that can be set on the document type () to describe theorg.nuxeo.ecm.core.schema.types.Type
document type general behavior. A rule can hold several facets: it applies if current document in context has at least one of them.
condition: EL expression that can be evaluated against the context. The Seam context is made available for conditions evaluation. A rule
can hold several conditions: it applies if at least one of the conditions is verified.
type: document type to check against current document in context. A rule can hold several types: it applies if current document is one of
them. The fake 'Server' type is used to check the server context.
schema: document schema to check against current document in context. A rule can hold several schemas: it applies if current document
has one of them.
group: group like "members" to check against current user in context. A rule can hold several groups: it applies if current user is in one of
them.

Filters do not support merging, so if you define a filter with an id that is already used in another contribution, only the first contribution will be taken
into account.

Adapt templates to display an action

It is important to understand that an action does define the way it will be rendered: This is left to pages, templates and other componentsnot
displaying it. Most of the time, actions will be rendered as command links or command buttons.

For instance, actions using the USER_SERVICES category will be rendered as action links:

In EL expressions representing conditions, Seam component names can only be used when placed at the beginning of the expression.
As a result, it is not possible to use several seam components in a single expression.

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

238
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

<nxu:methodResult name="actions"
 value="#{webActions.getActionsList('USER_SERVICES')}">
 <nxu:dataList layout="simple" var="action" value="#{actions}"
 rowIndexVar="row" rowCountVar="rowCount">
 <h:outputText value=" | " rendered="#{row!=(rowCount-1)}" />
 <nxh:commandLink action="#{action.getLink()}">
 <t:htmlTag value="br" rendered="#{row==(rowCount-1)}" />
 <h:outputText value="#{messages[action.label]}" />
 </nxh:commandLink>
 </nxu:dataList>
</nxu:methodResult>

The nxu:methodResult tag is only used to retrieve the list of actions declared for the USER_SERVICES category. The nxh:commandLink is used
instead of a simple h:commandLink so that it executes commands that where described as action expression methods.

Another use case is the document tabs: actions using the VIEW_ACTION_LIST category will be rendered as action links too, but actions are
managed by a specific seam component that will hold the information about the selected tab. When clicking on an action, this selected tab will be
changed and the link it points to will be displayed.

Events and Listeners
Events and event listeners have been introduced at the Nuxeo core level to allow pluggable behaviors when managing documents (or any kinds
of objects of the site).

Whenever an event happens (document creation, document modification, relation creation, etc...), an event is sent to the event service that
dispatches the notification to its listeners. Listeners can perform whatever action it wants when receiving an event.

Concepts

A core event has a source which is usually the document model currently being manipulated. It can also store the event identifier, that gives
information about the kind of event that is happening, as well as the principal connected when performing the operation, an attached comment,
the event category, etc.

Events sent to the event service have to follow the interface.org.nuxeo.ecm.core.event.Event

A core event listener has a name, an order, and may have a set of event identifiers it is supposed to react to. Its definition also contains the
operations it has to execute when receiving an interesting event.

Event listeners have to follow the interface.org.nuxeo.ecm.core.event.EventListener

Several event listeners exist by default in the nuxeo platform, for instance:

DublinCoreListener: it listens to document creation/modification events and sets some dublincore metadata accordingly (date of
creation, date of last modification, document contributors...)

DocUIDGeneratorListener: it listens to document creation events and adds an identifier to the document if an UID pattern has been
defined for this document type.

DocVersioningListener: it listens to document versioning change events and changes the document version numbers accordingly.

Registering an Event Listener

Event listeners can be registered using extension points. Here are example event listeners registrations from Nuxeo EP:

<component name="DublinCoreStorageService">
 <extension target="org.nuxeo.ecm.core.event.EventServiceComponent" point="listener">
 <listener name="dclistener" async="false" postCommit="false" priority="120"
 class="org.nuxeo.ecm.platform.dublincore.listener.DublinCoreListener">
 </listener>
 </extension>
</component>

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

239
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

<component name="org.nuxeo.ecm.platform.annotations.repository.listener">
 <extension target="org.nuxeo.ecm.core.event.EventServiceComponent" point="listener">
 <listener name="annotationsVersionEventListener" async="true" postCommit="true"

class="org.nuxeo.ecm.platform.annotations.repository.service.VersionEventListener">
 <event>documentCreated</event>
 <event>documentRemoved</event>
 <event>versionRemoved</event>
 <event>documentRestored</event>
 </listener>
 </extension>
</component>

When defining an event listener, you should specify:

a name, useful to identify the listener and let other components disable/override it,
whether the listener is synchronous or asynchronous (default is synchronous),
whether the listener runs post-commit or not (default is false),
an optional priority among similar listeners,
the implementation class, that must implement ,org.nuxeo.ecm.core.event.EventListener
an optional list of event ids for which this listener must be called.

There are several kinds of listeners:

synchronous inline listeners are run immediately in the same transaction and same thread, this is useful for listeners that must modify
the state of the application like the event.beforeDocumentModification
synchronous post-commit listeners are run after the transaction has committed, in a new transaction but in the same thread, this is
useful for logging.
asynchronous listeners are run after the transaction has committed, in a new transaction and a separate thread, this is useful for any
long-running operations whose result doesn't have to be seen immediately in the user interface.

Processing an Event using an Event Listener

Here is a simple event listener:

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

240
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

import org.nuxeo.ecm.core.event.Event;
import org.nuxeo.ecm.core.event.EventContext;
import org.nuxeo.ecm.core.event.EventListener;
import org.nuxeo.ecm.core.event.impl.DocumentEventContext;

public class BookEventListener implements EventListener {

 public void handleEvent(Event event) throws ClientException {
 EventContext ctx = event.getContext();
 if (!(ctx instanceof DocumentEventContext)) {
 return;
 }
 DocumentModel doc = ((DocumentEventContext) ctx).getSourceDocument();
 if (doc == null) {
 return;
 }
 String type = doc.getType();
 if ("Book".equals(type)) {
 process(doc);
 }
 }

 public void process(DocumentModel doc) throws ClientException {
 ...
 }
}

Note that if a listener expects to modify the document upon save or creation, it must use events or emptyDocumentModelCreated beforeDocumen
, and save the document, as these events are themselves fired during the document save process.tModification not

If a listener expects to observe a document after it has been saved to do things on other documents, it can use events or documentCreated docu
.mentModified

Sending an Event

It is not as common as having new listeners, but sometimes it's useful to send new events. To do this you have to create an event bundle
containing the event, then send it to the event producer service:

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

241
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

EventProducer eventProducer;
try {
 eventProducer = Framework.getService(EventProducer.class);
} catch (Exception e) {
 log.error("Cannot get EventProducer", e);
 return;
}

DocumentEventContext ctx = new DocumentEventContext(session, session.getPrincipal(),
doc);
ctx.setProperty("myprop", "something");

Event event = ctx.newEvent("myeventid");
try {
 eventProducer.fireEvent(event);
} catch (ClientException e) {
 log.error("Cannot fire event", e);
 return;
}

You can also have events be sent automatically at regular intervals using the , see that section for morScheduling periodic events

Handling errors

Sometimes, you may want to handle errors that occurred in an inline listener in the UI layer. This is a little bit tricky but do-able.

In the listener, you should register the needed information in a place that is shared with the UI layer.
You can use the document context map for this.

...
 DocumentEventContext ctx = (DocumentEventContext)event.getContext();
 DocumentModel doc = ctx.getSourceDocument();
 ScopedMap data = doc.getContextData();
 data.putScopedValue(MY_ERROR_KEY, "some info");
...

Another thing is to insure that the current transaction will be roll-backed. Marking the event as rollback
makes the event service throwing a runtime exception when returning from the listener.

...
 TransactionHelper.setTransactionRollbackOnly();
 event.markRollback();
 throw new ClientException("rollbacking");
...

Then the error handling in the UI layer can be managed like this

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

242
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

...
 DocumentModel doc = ...;
 try {
 // doc related operations
 } catch (Exception e) {
 Serializable info = doc.getContextData(MY_ERROR_KEY);
 if (info == null) {
 throw e;
 }
 // handle code
 }
...

Common Events

Any Nuxeo code can define its own events, but it's useful to know some of the standard ones that Nuxeo sends by default.

Basic Events

emptyDocumentModelCreated: the data structure for a document has been created, but nothing is saved yet. This is useful to provide
default values in document creation forms.
documentCreated: a document has been created (this implies that a write to the database has occurred). Be careful, this event is sent
for all creations, including for new versions and new proxies.
beforeDocumentModification: a document is about to be saved after a modification. A synchronous listener may update the
DocumentModel but must not save it (this will be done automatically).
documentModified: a document has been saved after a modification.
beforeDocumentSecurityModification: a document's ACLs are about to change.
documentSecurityUpdated: a document's ACLs have changed.
aboutToRemove / : a document or a version are about to be removed.aboutToRemoveVersion
documentRemoved / : a document or a version have been removed.versionRemoved
documentLocked / : a document has been locked or unlocked.documentUnlocked
sessionSaved: the session has been saved (all saved documents are written to database).
lifecycle_transition_event: a transition has been followed on a document.

Copy/Move Events

aboutToCopy / : a document is about to be copied or moved.aboutToMove
documentCreatedByCopy: a document has been copied, the passed document is the new copy.
documentDuplicated: a document has been copied, the passed document is the original.
documentMoved: a document has been moved.

Versioning Events

incrementBeforeUpdate: a document is about to be snapshotted as a new version. The changes made to the passed DocumentModel
will be saved in the archived version but will not be seen by the main document being versioned. This is useful to update version
numbers and version-related information.
beforeRestoringDocument: a document is about to be restored.
documentRestored: a document has been restored.

Publishing Events

Low-level events:

documentProxyPublished: a proxy has been published (or updated).
documentProxyUpdated: a proxy has been updated.
sectionContentPublished: new content has been published in this section.

High-level events:

documentPublished: a document has been published (event sent for the base document being published and for the published
document).
documentWaitingPublication: a document has been published but is not approved yet (event sent for the base document being
published and for the published document)

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

243
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

documentPublicationApproved: a document waiting for approval has been approved.
documentPublicationRejected: a document waiting for approval has been rejected.
documentUnpublished:

Scheduling periodic events

Overview

The Scheduler Service is a Nuxeo EP service to schedule events at periodic times. This is the best way in Nuxeo EP to execute things every
night, every hour, every five minutes, or at whatever granularity you require.

Scheduler contribution

To schedule an event, you contribute a to the extension point of the <schedule> schedule org.nuxeo.ecm.platform.scheduler.core.
 component.service.SchedulerRegistryService

A schedule is defined by:

id: an identifier,
username: the user under which the event should be executed,
event: the identifier of the event to execute,
eventCategory: the event category to use,
cronExpression: an expression to specify the schedule.

The is used for informational purposes and programmatic unregistration.id

If the is missing, the event is executed as a system user, otherwise as that user. Note that since Nuxeo EP 5.4.1 no password isusername
needed (the login is done internally and does not need password).

The specifies the event to execute. See for more.event the section about Events and Listeners

The is also used to specify the event, but usually it can be skipped.eventCategory

The is described in the following section.cronExpression

Here is an example contribution:

<?xml version="1.0"?>
<component name="com.example.nuxeo.schedule.monthly_stuff">
 <extension
target="org.nuxeo.ecm.platform.scheduler.core.service.SchedulerRegistryService"
 point="schedule">
 <schedule id="monthly_stuff">
 <username>Administrator</username>
 <eventId>doStuff</eventId>
 <eventCategory>default</eventCategory>
 <!-- Every first of the month at 3am -->
 <cronExpression>0 0 3 1 * ?</cronExpression>
 </schedule>
 </extension>
</component>

Cron expression

A Scheduler cron expression is similar to a , except that it has an additional field that isn't needed in Unix whichUnix cron expression seconds
doesn't need this kind of precision.

The expression is a sequence of 6 or 7 fields. Each field can hold a number or a wildcard, or in complex cases a sequence of numbers or an
additional increment specification. The fields and their allowed values are:

seconds minutes hours day of month month day of week year

0-59 0-59 0-23 1-31 1-12 1-7 or SUN-SAT optional

A star ({}) can be used to mean "all values". A question mark () can be used to mean "no specific value" and is allowed for one (but not?
 and fields.both) of the *day of month day of week

http://doc.nuxeo.com/x/GATF
http://en.wikipedia.org/wiki/Cron

 Nuxeo Enterprise Platform 5.4 Documentation

244
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

Note that in the , 1 stands for Sunday, 2 for Monday, 3 for Tuesday, etc. For clarity it's best to use SUN, MON, TUE, etc.day of week

A range of values can be specified using a dash, for instance for the months field or for the day of week field.1-6 MON-WED

Several values can be specified by separating them with commas, for instance for the minutes field.0,15,30,35

Repetitions can be specified using a slash followed by an increment, for instance means start at 0 and repeat every 15. This example0/15
means the same as the one above.

There's actually more but rarely used functionality; the Scheduler's full cron expression syntax is described in detail in the Quartz CronExpression
. A tutorial is also available .Javadoc here

Cron expression examples

Every first of the month at 3:15am:

0 15 3 1 * ?

At 3:15am every day:

0 15 3 * * ?

Every minute starting at 2pm and ending at 2:15pm, every day:

0 0-15 14 * * ?

At 3:15am every Monday, Tuesday, Wednesday, Thursday and Friday:

0 15 3 ? * MON-FRI

At 3:15a, every 5 days every month, starting on the first day of the month:

0 15 3 1/5 * ?

Tagging
The tag service provides the backbone of the tagging feature. Tags are keywords applied as metadata on documents reflecting (for instance) the
user opinion about that document. The tags are either categorizing the content of the document (labels like "document management", "ECM",
"complex Web application", etc. can be thought as tags for Nuxeo), or they reflect the user feeling ("great", "user friendly", "versatile", etc.).

The tag service uses two important concepts: a object, and a action. Both are represented as Nuxeo documents.tag tagging

A holds a label that does not contain any space ("documentmanagement", "webapplication", etc.). A action is a link between a giventag tagging
document and a tag, and belongs to a given user.

Tag service architecture

The following document types are defined by the tag service.

A is a document type representing the tag itself (but not its association to specific documents). It contains the usual dublincore schema, andTag
in addition has a specific schema containing a string field.tag tag:label

http://doc.nuxeo.com/x/GATF
http://www.quartz-scheduler.org/docs/api/1.8.1/org/quartz/CronExpression.html
http://www.quartz-scheduler.org/docs/api/1.8.1/org/quartz/CronExpression.html
http://www.quartz-scheduler.org/docs/tutorials/crontrigger.html

 Nuxeo Enterprise Platform 5.4 Documentation

245
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

A is a relation type representing the action of tagging a given document with a tag. (A relation type is a document type extending theTagging
default Relation document type; it works like a normal document type except that it's not found by NXQL queries on). The importantDocument
fields of a Tagging document are which is the document id, which is the tag id, and which is the userrelation:source relation:target dc:creator
doing the tagging action.

Both Tag and Tagging documents managed by the tag service are , which means that they don't have a parent folder. They are thereforeunfiled
not visible in the normal tree of documents, only queries can find them. In addition they don't have any ACLs set on them, which means that only
a superuser (and the tag service internal code) can access them.

Tag service features

The tag service is accessed through the interface.org.nuxeo.ecm.platform.tag.TagService

The tag service allows you to:

tag and untag a document,
get all the tags for a document,
get all the documents for a tag,
get the tag cloud for a set of documents,
get suggested tags for a given tag prefix.

A tag cloud is a set of weighted tags, the weights being integers representing the frequency of the tag.
The weights can be just a count of occurences, or can be normalized to the 0-100 range for easier display.

Directories and Vocabularies
In Nuxeo EP, a is a source of (mostly) table-like data that lives outside of the VCS document storage database. A directory is typically adirectory
connection to an external data source that is also access by other processes than Nuxeo EP itself (therefore allowing shared management and
usage).

A is a specialized with only a few important columns that are used by Nuxeo EP to display things like menus and selectionvocabulary directory
lists.

Table of contents:
SQL directories
LDAP directories
Multi-directories
References between directories

Static reference as a dn-valued LDAP attribute
Dynamic reference as a ldapUrl-valued LDAP attribute
LDAP tree reference
Defining inverse references
References defined by a many-to-many SQL table

SQL directories

SQL directories read and store their information in a SQL database. They are defined through the extension point of the directories org.nux
 component.eo.ecm.directory.sql.SQLDirectoryFactory

The element must contain a number of important sub-elements:directory

name: the name of the directory, used for overloading and in application code,
schema: the schema describing the columns in the directory,
dataSource: the JDBC datasource defining the database in which the data is stored,
table: the SQL table in which the data is stored,
idField: the primary key in the table, used for retrieving entries by id,
autoincrementIdField: whether the idField is automatically incremented - this value is most of the time at false, because the identifier is
a string,
querySizeLimit: the maximum number of results that the queries on this directory should return; if there are more results than this, an
exception will be raised,
dataFile: file from which data is read to populate the table, depending on the following element,
createTablePolicy: indicates how the dataFile will be used to populate the table. Three values are allowed: if the dataFile is nevernever
used (the default), if the dataFile is used to create missing columns (when the table is created or each time a newon_missing_columns
column is added, due to a schema change), if the dataFile is used to create the table as each restart of the application server.always
cacheTimeout: the timeout (in seconds) after which an entry is not kept in the cache anymore, the default is 0 which means never time
out,
cacheMaxSize: the maximum number of entries in the cache, the default is 0 and means to not use entries caching at all,
readOnly: if the directory should be read-only.
substringMatchType: how a non-exact match is done, possible values are , or ; this is used in most UIsubany subinitial subfinal
searches,

The following is used by the UI if the directory is a hierarchical vocabulary:

http://doc.nuxeo.com/x/GATF
http://www.nuxeo.org/api/nuxeo/5.4/javadoc/org/nuxeo/ecm/platform/tag/TagService.html

 Nuxeo Enterprise Platform 5.4 Documentation

246
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

parentDirectory: the parent directory to use.

The following are used only if the directory is used for authentication:

password: field from the table which contain the passwords,
passwordHashAlgorithm: the has algorithm to use to store new passwords, allowed values are and , the default (nothingSSHA SMD5
specified) is to store passwords in clear.

Example:

<?xml version="1.0"?>
<component name="com.example.project.directories.sql">
 <extension target="org.nuxeo.ecm.directory.sql.SQLDirectoryFactory"
 point="directories">
 <directory name="continent">
 <schema>vocabulary</schema>
 <dataSource>java:/nxsqldirectory</dataSource>
 <cacheTimeout>3600</cacheTimeout>
 <cacheMaxSize>1000</cacheMaxSize>
 <table>continent</table>
 <idField>id</idField>
 <autoincrementIdField>false</autoincrementIdField>
 <dataFile>directories/continent.csv</dataFile>
 <createTablePolicy>on_missing_columns</createTablePolicy>
 </directory>
 </extension>
</component>

LDAP directories

LDAP directories store information in a LDAP database. They are defined through the and extension points of the servers directories org.
 component.nuxeo.ecm.directory.ldap.LDAPDirectoryFactory

First, one or more servers have to be defined. A defines:server

name: the name of the server which will be used in the declaration of the directories,
ldapUrl: the address of the LDAP server, in or form; there can be several such tags to leverage clustered LDAPldap:// ldaps://
configurations,
bindDn: the Distinguished Name used to bind to the LDAP server,
bindPassword: the corresponding password.

The bind credentials are used by Nuxeo EP to browse, create and modify all entries (irrespective of the actual Nuxeo user these entries may
represent).

Optional parameters are:

connectionTimeout: the connection timeout (in milliseconds), the default is 10000 (10 seconds),
poolingEnabled: whether to enable internal connection pooling (the default is true).

Example:

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

247
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

<?xml version="1.0"?>
<component name="com.example.project.directories.ldap.srv">
 <extension target="org.nuxeo.ecm.directory.ldap.LDAPDirectoryFactory"
 point="servers">
 <server name="default">
 <ldapUrl>ldap://localhost:389</ldapUrl>
 <bindDn>cn=nuxeo,ou=applications,dc=example,dc=com</bindDn>
 <bindPassword>secret</bindPassword>
 </server>
 </extension>
</component>

Once you have declared the server, you can define new LDAP . The sub-elements of the element are:directories directory

name, , and : same as for SQL directories,schema idField passwordField
searchBaseDn: entry point into the server's LDAP tree structure; searches are only made below this root node,
searchClass: restricts the type of entries to return as result,
searchFilter: additional LDAP filter to restrict the search results,
searchScope: the scope of the search. It can take two values: to search only under the current node, or to search inonelevel subtree
the whole subtree,
substringMatchType: defines who the query is built using wildcard characters. Three different values can be provided:

subany: wildcards are added around the string to match (as)foo
subinitial: wildcard is added before the string (*bar)
subfinal: wildcard is added after the string (baz*). This is the default behaviour.

readOnly: boolean value. This parameter allows to create new entries or modify existing ones in the LDAP server
cacheTimeout: cache timeout in seconds
cacheMaxSize: maximum number of cached entries before global invalidation
creationBaseDn: entry point in the server's LDAP tree structure where new entries will be created. This is useless to provided if
readOnly attribute is set to false.
creationClass: use as many tag as needed to specify which class are used to defined new people entries in LDAP server.

Example:

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

248
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

<?xml version="1.0"?>
<component name="com.example.project.directories.ldap.dir">
 <extension target="org.nuxeo.ecm.directory.ldap.LDAPDirectoryFactory"
 point="directories">
 <directory name="userDirectory">
 <server>default</server>
 <schema>user</schema>
 <idField>username</idField>
 <passwordField>password</passwordField>

 <searchBaseDn>ou=people,dc=example,dc=com</searchBaseDn>
 <searchClass>person</searchClass>

<searchFilter>(&(sn=foo*)(myCustomAttribute=somevalue))</searchFilter>
 <searchScope>onelevel</searchScope>
 <substringMatchType>subany</substringMatchType>

 <readOnly>false</readOnly>

 <cacheTimeout>3600</cacheTimeout>
 <cacheMaxSize>1000</cacheMaxSize>

 <creationBaseDn>ou=people,dc=example,dc=com</creationBaseDn>
 <creationClass>top</creationClass>
 <creationClass>person</creationClass>
 <creationClass>organizationalPerson</creationClass>
 <creationClass>inetOrgPerson</creationClass>
 </directory>
 </extension>
</component>

Multi-directories

Multi directories are used to combine values coming from different directories. They are defined through the extension point of the directories
 component.org.nuxeo.ecm.directory.multi.MultiDirectoryFactory

A multi-directory is made up of one or more . Each source aggregates one or more .sources sub-directories

A defines:source

name: the source name, for indentification purposes,
creation: when new entries should be created in this source (default is),true false
subDirectory: one or more sub-directories.

A has:subDirectory

name: the name of a valid directory, from which data will be read and written,
optional: if the sub-directory may have no info about a given entry without this being an error (default is),true false
field: zero or more field mapping between the underlying sub-directory and the name it should have in the multi-directory.

A element is of the form: . This means that the field of the underlying directory will be turned into afield <field for="foo">bar</field> foo
field named in the multi-directory.bar

When an entry is requested from the multi-directory, each source will be consulted in turn. The first one that has an answer will be used. In a
source, the fields of a given entry will come from all the sub-directories, with appropriate field name re-mapping. Each sub-directory has part of
the entry, keyed by its main id (which may be remapped).

For the creation of new entries, only the sources marked for are considered.creation

Example:

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

249
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

<?xml version="1.0"?>
<component name="com.example.project.directories.multi">
 <extension target="org.nuxeo.ecm.directory.multi.MultiDirectoryFactory"
 point="directories">
 <directory name="mymulti">
 <schema>someschema</schema>
 <idField>uid</idField>
 <passwordField>password</passwordField>
 <source name="sourceA" creation="true">
 <subDirectory name="dir1">
 <field for="thefoo">foo</field>
 </subDirectory>
 <subDirectory name="dir2">
 <field for="uid">id</field>
 <field for="thebar">bar</field>
 </subDirectory>
 </source>
 <source name="sourceB">
 ...
 </source>
 </directory>
 </extension>
</component>

References between directories

Directory references leverage two common ways of string relationship in LDAP directories.

Static reference as a dn-valued LDAP attribute

The static reference strategy is to apply when a multi-valued attribute stores the exhaustive list of distinguished names of reference entries, for
example the uniqueMember of the groupOfUniqueNames object.

<ldapReference field="members" directory="userDirectory"
 staticAttributeId="uniqueMember" />

The staticAttributeId attribute contains directly the value which can be read and manipulated.

Dynamic reference as a ldapUrl-valued LDAP attribute

The dynamic attribute strategy is used when a potentially multi-value attribute stores a LDAP URL intensively, for example the memberURL's
attribute of the groupOfURL object class.

<ldapReference field="members" directory="userDirectory"
 forceDnConsistencyCheck="false"
 dynamicAttributeId="memberURL" />

The value contained in dynamicAttributeId looks like and will beldap:///ou=groups,dc=example,dc=com??subtree?(cn=sub*)
resolved by dynamical queries to get all values. The forceDnConsistencyCheck attribute will check that the value got through the dynamic
resolution correspond to the attended format. otherwise, the value will be ignored. Use this check when you are not sure of the validity of the
distinguished name

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

250
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

1.

LDAP tree reference

The LDAP tree reference can be used to resolve children in the LDAP tree hierarchy.

<ldapTreeReference field="children" directory="groupDirectory"
 scope="subtree" />

The field has to be a list of strings. It will resolve children of entries in the current directory, and look them up in the directory specified in the
reference.The scope attribute. Available scopes are "onelevel" (default), "subtree". Children with same id than parent will be filtered. An inverse
reference can be used to retrieve the parent form the children entries. It will be stored in a list, even if there can be only 0 or 1 parent.

WARNING: Edit is NOT IMPLEMENTED: modifications to this field will be ignored when saving the entry.

Defining inverse references

Inverse references are defined with the following declarations:

<references>
 <inverseReference field="groups" directory="groupDirectory"
 dualReferenceField="members" />
</references>

This syntax should be understood as "the member groups value is an inverse reference on groupDirectory directory using members reference". It
is the group directory that stores all members for a given group. So the groups of a member are retrieved by querying in which groups a member
belongs to.

References defined by a many-to-many SQL table

TODO OG

Adding custom LDAP fields to the UI
To add a custom LDAP fields to the User interface you have to:

create a custom schema based on nuxeo's user.xsd schema with custom fields related to the fields in your LDAP system
schemas/myuser.xsd:

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

251
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

1.

2.

3.
a.

b.

 <?xml version="1.0"?>
 <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:nxs="http://www.nuxeo.org/ecm/schemas/myuser"
 targetNamespace="http://www.nuxeo.org/ecm/schemas/myuser">

 <xs:include schemaLocation="base.xsd" />

 <xs:element name="username" type="xs:string" />
 <xs:element name="password" type="xs:string" />
 <xs:element name="email" type="xs:string" />
 <xs:element name="firstName" type="xs:string" />
 <xs:element name="lastName" type="xs:string" />
 <xs:element name="company" type="xs:string" />
 <!-- your custom telephone field -->
 <xs:element name="telephone" type="xs:string" />

 <xs:element name="groups" type="nxs:stringList" />

 </xs:schema>

Add your schema via Nuxeo's extension system:
OSGI-INF/schema-contrib.xml

 <?xml version="1.0"?>
 <component name="com.example.myproject.myuser.schema">
 <extension target="org.nuxeo.ecm.core.schema.TypeService"
point="schema">
 <schema name="myuser" src="schemas/myuser.xsd" />
 </extension>
 </component>

modify your LDAP configuration file in Nuxeo (default-ldap-users-directory-bundle.xml) to include
your custom schema

default-ldap-users-directory-bundle.xml:

 <extension
target="org.nuxeo.ecm.directory.ldap.LDAPDirectoryFactory"
 point="directories">

 <directory name="userDirectory">
 <server>default</server>
 <!-- association between your custom schema and the
directory -->
 <schema>myuser</schema>

mapping between your schema and your LDAP fields
default-ldap-users-directory-bundle.xml (continued):

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

252
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

3.

b.

4.
a.

b.

 <fieldMapping name="username">uid</fieldMapping>
 <fieldMapping name="password">userPassword</fieldMapping>
 <fieldMapping name="firstName">givenName</fieldMapping>
 <fieldMapping name="lastName">sn</fieldMapping>
 <fieldMapping name="company">o</fieldMapping>
 <fieldMapping name="email">mail</fieldMapping>
 <fieldMapping
name="telephone">telephoneNumber</fieldMapping>

modify the UI
add your custom widget to the layout

default-ldap-users-directory-bundle.xml(continued):

 <extension
target="org.nuxeo.ecm.platform.forms.layout.WebLayoutManager"
 point="layouts">

 <layout name="user">
 <templates>
 <template
mode="any">/layouts/layout_default_template.xhtml</template>
 </templates>
 <rows>
 <row>
 <widget>username</widget>
 </row>
 <row>
 <!-- your custom telephone widget-->
 <widget>telephone</widget>
 </row>

define a new widget for your custom field to be used in the layout above
default-ldap-users-directory-bundle.xml(continued):

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

253
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

4.

b.

 <widget name="telephone" type="text">
 <labels>
 <label mode="any">telephone</label>
 </labels>
 <translated>true</translated>
 <fields>
 <field schema="myuser">telephone</field>
 </fields>
 <widgetModes>
 <mode value="editPassword">hidden</mode>
 </widgetModes>
 <properties widgetMode="edit">
 <property name="required">true</property>
 <property name="styleClass">dataInputText</property>
 </properties>
 </widget>

Publisher service
Since Nuxeo DM 5.3GA, there are three ways to publish a document:

on local sections, ie the sections created in your Nuxeo DM instance,
on remote sections, ie the sections of a remote Nuxeo server,
on the file system.

Publication is configured using the .PublisherService

On this page
About the PublisherService
Configuring local sections publishing
Configuring remote sections publishing

Server configuration
Client configuration

Configuring file system publishing

About the PublisherService

When using the , you only need to care about three interfaces:PublisherService

PublishedDocument: represents the published document. It can be created from a DocumentModel, a proxy or a file on the file system.
: represents a Node where you can publish a DocumentModel. It can be another DocumentModel (mainly Folder / Section) orPublicationNode

a directory on the file system.
: the tree which is used to publish / unpublish documents, to approve / reject publication, list the already published documentsPublicationTree

in a PublicationNode, ... See the .javadoc of the PublicationTree

The PublisherService mainly works with three concepts:

factory: the class which is used to actually create the published document. It also manages the approval / rejection workflow on published
documents.

: a instance associated to a name: for instance, we have a which will publish in Sections,tree PublicationTree SectionPublicationTree
a to publish on the file system, ...LocalFSTree

: an actual publication tree where we define the factory to use, the underlying tree to use, its name / title, and some parameterstree instance
we will see later.

Configuring local sections publishing

Publishing in local sections was the only way to publish on versions < 5.3GA. From Nuxeo DM 5.3GA, it is the default way to publish documents.

Here is the default contribution you can find in Nuxeo in . Thispublisher-jbpm-contrib.xml nuxeo-platform-publisher-jbpm
contribution overrides the one in located in the project:publisher-contrib.xml nuxeo-platform-publisher-core

http://doc.nuxeo.com/x/GATF
http://community.nuxeo.com/api/nuxeo/5.4/javadoc/org/nuxeo/ecm/platform/publisher/api/PublicationTree.html

 Nuxeo Enterprise Platform 5.4 Documentation

254
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

<extension target="org.nuxeo.ecm.platform.publisher.impl.service.PublisherServiceImpl"
 point="treeInstance">

 <publicationTreeConfig name="DefaultSectionsTree" tree="RootSectionsCoreTree"
 factory="CoreProxyWithWorkflow" localSectionTree="true"
 title="label.publication.tree.local.sections">
 <parameters>
 <!-- <parameter name="RootPath">/default-domain/sections</parameter> -->
 <parameter name="RelativeRootPath">/sections</parameter>
 <parameter name="enableSnapshot">true</parameter>
 <parameter name="iconExpanded">/icons/folder_open.gif</parameter>
 <parameter name="iconCollapsed">/icons/folder.gif</parameter>
 </parameters>
 </publicationTreeConfig>

</extension>

In this contribution, we define an instance using the tree and the factory. We give it aRootSectionsCoreTree CoreProxyWithWorkflow
name, a title and configure it to be a (which means we will publish the documents in the Sections of the Nuxeo applicationlocalSectionTree
the documents are created in).

The available parameters are:

RootPath: it's used when you want to define the root publication node of your . You can't use both AND PublicationTree RootPath
 parameters.RelativeRoothPath

RelativeRootPath: used when you just want to define a relative path (without specifying the domain path). A instPublicationTree
ance will be created automatically for each domain, appending the value to each domain.RelativeRootPath
For instance, let's assume we have two domains, domain-1 and domain-2, and the is set to "/sections". RelativeRootPath
Then, two instances will be created: the first one with a set to "/domain-1/sections", and the second onePublicationTree RootPath
with a set to "/domain-2/sections",RootPath
In the UI, when publishing, you can chose the you want. The list of trees will automatically be updated when creatingPublicationTree
and deleting domains.
iconExpanded and : specify which icons to use when displaying the on the user interface.iconCollapsed PublicationTree

Configuring remote sections publishing

To make the remote publication work, both the Nuxeo server instance and Nuxeo client instance need to be configured.

Server configuration

You should create a new configuration file, for instance, in the folder of your Nuxeopublisher-server-config.xml nuxeo.ear/config
acting as a server (ie the Nuxeo application on which the documents will be published).

Here is a sample configuration:

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

255
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

<?xml version="1.0"?>
<component name="org.nuxeo.ecm.platform.publisher.contrib.server">

 <extension
target="org.nuxeo.ecm.platform.publisher.impl.service.PublisherServiceImpl"
 point="treeInstance">

 <publicationTreeConfig name="ServerRemoteTree" tree="CoreTreeWithExternalDocs"
factory="RemoteDocModel" >
 <parameters>
 <parameter name="RootPath">/default-domain/sections</parameter>
 </parameters>
 </publicationTreeConfig>

 </extension>

</component>

The available parameters are:

RootPath: its value must be the path to the document which is the root of your . Here, it will be the document PublicationTree /defa
, the default Sections root in Nuxeo.ult-domain/sections

This parameter can be modified to suit your needs.

Client configuration

You should create a new configuration file, for instance, in the folder of your Nuxeopublisher-client-config.xml nuxeo.ear/config
acting as a client (ie the Nuxeo application from which documents are published).

Here is a sample configuration:

Don't forget to put the whole path to the document.

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

256
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

<?xml version="1.0"?>
<component name="org.nuxeo.ecm.platform.publisher.contrib.client">

 <extension
target="org.nuxeo.ecm.platform.publisher.impl.service.PublisherServiceImpl"
 point="treeInstance">

 <publicationTreeConfig name="ClientRemoteTree" tree="ClientForRemoteTree"
 factory="ClientProxyFactory">
 <parameters>
 <parameter name="title">label.publication.tree.remote.sections</parameter>
 <parameter name="userName">Administrator</parameter>
 <parameter name="password">Administrator</parameter>
 <parameter name="baseURL">
 http://myserver:8080/nuxeo/site/remotepublisher/
 </parameter>
 <parameter name="targetTree">ServerRemoteTree</parameter>
 <parameter name="originalServer">localserver</parameter>
 <parameter name="enableSnapshot">true</parameter>
 </parameters>
 </publicationTreeConfig>

 </extension>

</component>

The available parameters:

targetTree: this parameter corresponds to the name of the tree defined on the server Nuxeo application, here .ServerRemoteTree
username, : the user account defined by those parameters will be the one used to connect to the remote Nuxeo and so topassword
create documents in the . This account MUST exist on the server.PublicationTree
baseURL: the URL used by the PublisherService on the client side to communicate with the server Nuxeo application.
originalServer: identifies the Nuxeo application used as client.

Configuring file system publishing

To publish on the file system, you just need to define a new using the and the of your tree.TreeInstance LocalFSTree RootPath

Here is a sample configuration:

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

257
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

<extension
target="org.nuxeo.ecm.platform.publisher.impl.service.PublisherServiceImpl"
 point="treeInstance">

 <publicationTreeConfig name="FSTree" tree="LocalFSTree"
 factory="LocalFile" localSectionTree="false"
 title="label.publication.tree.fileSystem">
 <parameters>
 <parameter name="RootPath">/opt/publishing-folder</parameter>
 <parameter name="enableSnapshot">true</parameter>
 <parameter name="iconExpanded">/icons/folder_open.gif</parameter>
 <parameter name="iconCollapsed">/icons/folder.gif</parameter>
 </parameters>
 </publicationTreeConfig>

</extension>

The available parameters are:

RootPath: the root folder on the file system to be used as the root of the publication tree.
iconExpanded and : specify which icons to use when displaying the on the user interface.iconCollapsed PublicationTree
enableSnapshot: defines if a new version of the document is created when the document is published.

Querying and Searching
In Nuxeo the main way to do searches is through NXQL, the Nuxeo Query Language, a SQL-like query language.

You can read a full description of the .NXQL syntax

The fulltext aspects of the searches are described on a .separate page

NXQL

NXQL syntax

The general syntax of a NXQL expression is:

SELECT (|[]) []* DISTINCT <select-clause> FROM <from-clause> WHERE <where-clause>

The is a comma-separated list of properties. Properties are Nuxeo document property names, for instance , or<select-clause> dc:modified
special properties, for instance (see below).ecm:uuid

The is a comma-separated list of document types.<from-clause>

The optional is a general .<where-clause> <predicate>

A can be:<predicate>

<predicate> <operator> <predicate>
<identifier> [] NOT IN (<literal-list>)
<identifier> [] NOT BETWEEN <literal> AND <literal>
<identifier> [] (since Nuxeo 5.4.1, cf)IS NOT NULL NXP-4339
(<predicate>)
NOT <predicate>
<expression>

An can be:<operator>

AND
OR
=
<> (or for Java compatibility)!=
<
<=
>
>=

http://doc.nuxeo.com/x/GATF
https://jira.nuxeo.com/browse/NXP-4339

 Nuxeo Enterprise Platform 5.4 Documentation

258
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

[] (|) (only between an and a)NOT LIKE ILIKE <identifier> <string>
STARTSWITH (only between an and a)<identifier> <string>

An can be:<expression>

<expression> <op> <expression>
(<expression>)
<literal>
<identifier>

An can be:<op>

+
-
*
/

A can be:<literal>

<string>: a string delimited by single quotes () or for Java compatibility double quotes (). Inside a string, special characters are' "
escaped by a backslash (), including for the quotes or double quotes contrary to the standard SQL syntax which would double them.\
The special , , and can also be used.\n \r \t \\
<integer>: an integer with optional minus sign.
<float>: a float.
TIMESTAMP : a timestamp in ISO format (_sss) (the space separator can be replaced by a).<timestamp> yyyy-MM-dd hh:mm:ss . T
DATE : a date, converted internally to a timestamp by adding to it.<date> 00:00:00

A is a comma-separated list of .<literal-list> <literal>

An is a simple or list property identifier.<identifier>

Special NXQL properties

The following properties are not legal as document property names, but are allowed in NXQL.

ecm:uuid: the document id ().DocumentModel.getId()

ecm:parentId: the document parent id.

ecm:path: the document path (), it cannot be used in the .DocumentModel.getPathAsString() <select-clause>

ecm:name: the document name ().DocumentModel.getName()

ecm:pos: the document position in its parent, this is in non-ordered folders. This is mainly used for ordering.NULL

ecm:primaryType: the document type ().DocumentModel.getType()

ecm:mixinType: a list of the document facets () with some restrictions. 1. the facet is never seen. 2.DocumentModel.getFacets() Immutable
the facets and are never seen on document instances (only if they're on the type). 3. like for other list properties, itFolderish HiddenInNavigation
can be used only with operators , , and .= <> IN NOT IN

ecm:isProxy: for proxies and for non-proxies (). This can only be compared to or .1 0 DocumentModel.isProxy() 1 0

ecm:isCheckedInVersion: for versions and for non-version (). This can only be compared to or .1 0 DocumentModel.isVersion() 1 0

ecm:currentLifeCycleState: the document lifecycle state ().DocumentModel.getCurrentLifeCycleState()

ecm:versionLabel: the version label for versions (only for a version), if it's not a version.DocumentModel.getVersionLabel() NULL

ecm:lock: the lock value ().DocumentModel.getLock()

ecm:fulltext: a special field to make fulltext queries, see for more.Fulltext queries

Examples

SELECT * FROM Document
SELECT * FROM Folder

Be careful with Oracle when comparing a value with an empty string, as in Oracle an empty string is . For instance NULL dc:descript
 will never match any document, and will also match for an empty description.ion <> '' dc:description IS NULL

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

259
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

SELECT * FROM File
SELECT * FROM Note
SELECT * FROM Note, File WHERE dc:title = 'My Doc'
SELECT * FROM Document WHERE NOT dc:title = 'My Doc'
SELECT * FROM Document WHERE dc:title = 'My Doc' OR dc:title = 'My Other Doc'
SELECT * FROM Document WHERE (dc:title = 'blah' OR ecm:isProxy = 1) AND
dc:contributors = 'bob'
SELECT * FROM Document WHERE filename = 'testfile.txt'
SELECT * FROM Document WHERE uid = 'isbn1234'
SELECT * FROM Document WHERE filename = 'testfile.txt' OR dc:title = 'testfile3_Title'
SELECT * FROM Document WHERE filename = 'testfile.txt' OR dc:contributors = 'bob'
SELECT * FROM Document WHERE dc:created BETWEEN DATE '2007-03-15' AND DATE
'2008-01-01'
SELECT * FROM Document WHERE dc:created NOT BETWEEN DATE '2007-01-01' AND DATE
'2008-01-01' -- (VCS only)
SELECT * FROM Document WHERE dc:contributors = 'bob'
SELECT * FROM Document WHERE dc:contributors IN ('bob', 'john')
SELECT * FROM Document WHERE dc:contributors NOT IN ('bob', 'john')
SELECT * FROM Document WHERE dc:contributors <> 'pete'
SELECT * FROM Document WHERE dc:contributors <> 'blah'
SELECT * FROM Document WHERE dc:contributors <> 'blah' AND ecm:isProxy = 0
SELECT * FROM Document WHERE dc:title LIKE 'testfile%' ORDER BY dc:description
SELECT * FROM Document WHERE dc:title LIKE 'testfile%' ORDER BY dc:description DESC
SELECT * FROM Document ORDER BY ecm:path
SELECT * FROM Document ORDER BY ecm:path DESC
SELECT * FROM Document ORDER BY ecm:name
SELECT * FROM Document WHERE ecm:path STARTSWITH '/'
SELECT * FROM Document WHERE ecm:path STARTSWITH '/nothere/'
SELECT * FROM Document WHERE ecm:path STARTSWITH '/testfolder1/'
SELECT * FROM Document WHERE dc:title = 'testfile1_Title' AND ecm:path STARTSWITH '/'
SELECT * FROM Document WHERE dc:title LIKE 'testfile%' AND ecm:path STARTSWITH '/'
SELECT * FROM Document WHERE dc:coverage STARTSWITH 'foo'
SELECT * FROM Document WHERE dc:coverage STARTSWITH 'foo/bar'
SELECT * FROM Document WHERE dc:subjects STARTSWITH 'gee'
SELECT * FROM Document WHERE dc:subjects STARTSWITH 'gee/moo'
SELECT * FROM Document WHERE dc:created >= DATE '2007-01-01'
SELECT * FROM Document WHERE dc:created >= TIMESTAMP '2007-03-15 00:00:00'
SELECT * FROM Document WHERE dc:created >= DATE '2007-02-15' AND dc:created <= DATE
'2007-03-15'
SELECT * FROM Document WHERE my:boolean = 1
SELECT * FROM Document WHERE ecm:isProxy = 1
SELECT * FROM Document WHERE ecm:isCheckedInVersion = 1
SELECT * FROM Document WHERE ecm:isProxy = 0 AND ecm:isCheckedInVersion = 0
SELECT * FROM Document WHERE ecm:uuid = 'c5904f77-299a-411e-8477-81d3102a81f9'
SELECT * FROM Document WHERE ecm:name = 'foo'
SELECT * FROM Document WHERE ecm:parentId = '5442fff5-06f1-47c9-ac59-1e10ef8e985b'
SELECT * FROM Document WHERE ecm:primaryType = 'Folder'
SELECT * FROM Document WHERE ecm:primaryType <> 'Folder'
SELECT * FROM Document WHERE ecm:primaryType = 'Note'
SELECT * FROM Document WHERE ecm:primaryType IN ('Folder', 'Note')
SELECT * FROM Document WHERE ecm:primaryType NOT IN ('Folder', 'Note')
SELECT * FROM Document WHERE ecm:mixinType = 'Versionable' AND ecm:mixinType <>
'Downloadable'
SELECT * FROM Document WHERE ecm:mixinType <> 'Rendition'
SELECT * FROM Document WHERE ecm:mixinType = 'Rendition' AND dc:title NOT ILIKE '%pdf'
SELECT * FROM Document WHERE ecm:mixinType = 'Folderish'
SELECT * FROM Document WHERE ecm:mixinType = 'Downloadable'
SELECT * FROM Document WHERE ecm:mixinType = 'Versionable'
SELECT * FROM Document WHERE ecm:mixinType IN ('Folderish', 'Downloadable')

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

260
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

SELECT * FROM Document WHERE ecm:mixinType NOT IN ('Folderish', 'Downloadable')
SELECT * FROM Document WHERE ecm:currentLifeCycleState = 'project'
SELECT * FROM Document WHERE ecm:versionLabel = '1.0'
SELECT * FROM Document WHERE ecm:currentLifeCycleState <> 'deleted'
SELECT * FROM Document WHERE ecm:fulltext = 'world'
SELECT * FROM Document WHERE dc:title = 'hello world 1' ORDER BY
ecm:currentLifeCycleState
SELECT * FROM Document WHERE dc:title = 'hello world 1' ORDER BY ecm:versionLabel

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

261
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

SELECT * FROM Document WHERE ecm:parentId = '62cc5f29-f33e-479e-b122-e3922396e601'
ORDER BY ecm:pos

Since Nuxeo 5.4.1 you can use :IS NULL

SELECT * FROM Document WHERE dc:expired IS NOT NULL
SELECT * FROM Document WHERE dc:language = '' OR dc:language IS NULL

Fulltext examples

This uses standard SQL LIKE:

SELECT * FROM Document WHERE dc:title LIKE 'Test%'
SELECT * FROM Document WHERE dc:title ILIKE 'test%'
SELECT * FROM Document WHERE dc:contributors LIKE 'pe%'
SELECT * FROM Document WHERE dc:subjects LIKE '%oo%'
SELECT * FROM Document WHERE dc:subjects NOT LIKE '%oo%'

The following uses a fulltext index that has to be additionally configured by administrators:

SELECT * FROM Document WHERE ecm:fulltext_title = 'world'

The following uses a fulltext index if one is configured for the dc:title field, otherwise it uses ILIKE-based queries:

SELECT * FROM Document WHERE ecm:fulltext.dc:title = 'brave'

Fulltext queries

Nuxeo documents can be searched using fulltext queries; the standard way to do so is to use the top-right "quick search" box in Nuxeo DM.

Search queries are expressed in a Nuxeo-defined syntax, described below.

Nuxeo fulltext query syntax

A fulltext query is a sequence of space-separated words, which are implicitly -ed together. A word can be prefixed by to signify negation (theAND -
word must not be present).

You can also use in queries (it has a lower precedence than the implicit), and use phrase search to search for words exactly followingOR AND
each other.

Examples:

hello world -smurf

Looks for all documents containing both and and which are not containing .hello world smurf

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

262
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

1.
2.
3.

4.

hello world OR smurf -black

Looks for all documents containing both and , or documents containing but not containing .hello world smurf black

"hello world" smurf

Looks for all documents containing the followed by and also containing .hello world smurf

Important notes:

In Nuxeo 5.3, searches using an and phrase searches are not supported, these features are only available since Nuxeo 5.4.OR
A query term (sequence of -ed words without an) containing only negations will not match anything.AND OR
Depending on the backend database and its configuration, different word stemming strategies may be used, which means that univers

 and (for instance) may or may not be considered the same word. Please check your for more ones universal database configuration
this, and the "analyzer" parameter used in the Nuxeo configuration for your database.
Phrase search is not yet supported when using a PostgreSQL backend database.

Using fulltext queries in NXQL

In NXQL the fulltext query is part of a WHERE clause that can contain other matches on metadata. Inside the WHERE clause, a fulltext query for
"something" (as described in the previous section) can be expressed in several ways:

ecm:fulltext = 'something'
ecm:fulltext_someindex = 'something' if an index called "someindex" is configured in the VCS configuration
ecm:fulltext.somefield = 'something' to search a field called "somefield", using fulltext if the VCS configuration contains a
single index for it, or if not using fallback to a standard SQL ILIKE query: (ILIKE is asomefield ILIKE '%something%'
case-independent LIKE)
ecm:fulltext LIKE 'something' is deprecated but identical to .ecm:fulltext = 'something'

Advanced search

On version 5.4, the advanced search is configured to work in conjunction with a .content view

The 'AdvancedSearch' document type is attached to this content view, and will store query parameters. Its default schema definition can be found
here: . It can be overriden to add new custom fields, or redefined completely as the document type is only referenced in theadvanced_search.xsd
content view.

Its content view definition shows the mapping between this document properties and the query to build (see).search-contentviews-contrib.xml

It also references the search layout (defined here:) and the result layouts (defined here: .search-layouts-contrib.xml layouts-listing-contrib.xml

The search form and search results reference the content view name (see and) and also usesearch_form.xhtml search_results_advanced.xhtml
the seam component to store the sort information and selected result columns.DocumentSearchActions

The result layout used here is named 'search_listing_ajax'. It is configured as a standard listing layout, and holds additional information on its

This page gives information on how to configure the advanced search since version 5.4

http://doc.nuxeo.com/x/GATF
https://doc.nuxeo.com/pages/viewpage.action?pageId=3343460
http://hg.nuxeo.org/nuxeo/nuxeo-dm/file/5.4/nuxeo-platform-webapp-types/src/main/resources/schemas/advanced_search.xsd
http://hg.nuxeo.org/nuxeo/nuxeo-jsf/file/5.4/nuxeo-platform-webapp-base/src/main/resources/OSGI-INF/search-contentviews-contrib.xml
http://hg.nuxeo.org/nuxeo/nuxeo-jsf/file/5.4/nuxeo-platform-webapp-base/src/main/resources/OSGI-INF/search-layouts-contrib.xml
http://hg.nuxeo.org/nuxeo/nuxeo-jsf/file/5.4/nuxeo-platform-webapp-base/src/main/resources/OSGI-INF/layouts-listing-contrib.xml
http://hg.nuxeo.org/nuxeo/nuxeo-dm/file/5.4/nuxeo-platform-webapp/src/main/resources/nuxeo.war/search/search_form.xhtml
http://hg.nuxeo.org/nuxeo/nuxeo-dm/file/5.4/nuxeo-platform-webapp/src/main/resources/nuxeo.war/search/search_results_advanced.xhtml
http://hg.nuxeo.org/nuxeo/nuxeo-jsf/file/5.4/nuxeo-platform-webapp-base/src/main/java/org/nuxeo/ecm/webapp/search/DocumentSearchActions.java

 Nuxeo Enterprise Platform 5.4 Documentation

263
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

columns definition so that it can be used to display the search columns selection and the sort infos available columns. It is used with the following
modes:

"edit_columns" when displaying the column selection widget as shown above
"edit_sort_infos" or "edit_sort_infos_map" when displaying the sort information list widget as shown above. These two modes are
equivalent, but the new item to add to the list is a instance in the first case, and a map withorg.nuxeo.ecm.core.api.SortInfo
keys "sortColumn" and "sortAscending" in the second case.
"view" when displaying the search results table (listing layout)

Here are screenshots of this layout rendered in these modes:

Here is an excerpt of this layout definition:

<layout name="search_listing_ajax">
 <templates>
 <template mode="any">
 /layouts/layout_listing_ajax_template.xhtml
 </template>
 <template mode="edit_columns">
 /layouts/layout_column_selection_template.xhtml
 </template>
 <template mode="edit_sort_infos">
 /layouts/layout_sort_infos_template.xhtml
 </template>
 <template mode="edit_sort_infos_map">
 /layouts/layout_sort_infos_template.xhtml
 </template>
 </templates>
 <properties mode="any">
 <property name="showListingHeader">true</property>
 <property name="showRowEvenOddClass">true</property>
 </properties>
 <properties mode="edit_columns">
 <property name="availableElementsLabel">
 label.selection.availableColumns
 </property>
 <property name="selectedElementsLabel">

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

264
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

 label.selection.selectedColumns
 </property>
 <property name="selectedElementsHelp"></property>
 <property name="selectSize">10</property>
 <property name="required">true</property>
 <property name="displayAlwaysSelectedColumns">false</property>
 </properties>
 <properties mode="edit_sort_infos">
 <property name="newSortInfoTemplate">
 #{documentSearchActions.newSortInfo}
 </property>
 <property name="required">false</property>
 </properties>
 <properties mode="edit_sort_infos_map">
 <property name="newSortInfoTemplate">
 #{documentSearchActions.newSortInfoMap}
 </property>
 <property name="required">false</property>
 </properties>
 <columns>
 <column name="selection" alwaysSelected="true">
 <properties mode="any">
 <property name="isListingSelectionBox">true</property>
 <property name="useFirstWidgetLabelAsColumnHeader">false</property>
 <property name="columnStyleClass">iconColumn</property>
 </properties>
 <widget>listing_ajax_selection_box</widget>
 </column>
 <column name="title_link">
 <properties mode="any">
 <property name="useFirstWidgetLabelAsColumnHeader">true</property>
 <property name="sortPropertyName">dc:title</property>
 <property name="label">label.selection.column.title_link</property>
 </properties>
 <properties mode="edit_sort_infos">
 <property name="showInSortInfoSelection">true</property>
 </properties>
 <properties mode="edit_sort_infos_map">
 <property name="showInSortInfoSelection">true</property>
 </properties>
 <widget>listing_title_link</widget>
 </column>
 [...]
 <column name="description" selectedByDefault="false">
 <properties mode="any">
 <property name="useFirstWidgetLabelAsColumnHeader">true</property>
 <property name="sortPropertyName">dc:description</property>
 <property name="label">description</property>
 </properties>
 <properties mode="edit_sort_infos">
 <property name="showInSortInfoSelection">true</property>
 </properties>
 <properties mode="edit_sort_infos_map">
 <property name="showInSortInfoSelection">true</property>
 </properties>
 <widget>listing_description</widget>
 </column>
 <column name="subjects" selectedByDefault="false">
 <properties mode="any">

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

265
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

 <property name="useFirstWidgetLabelAsColumnHeader">true</property>
 <property name="label">label.dublincore.subject</property>
 </properties>
 <widget>listing_subjects</widget>
 </column>
 [...]
 </columns>

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

266
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

</layout>

All the columns have names defined so that this value can be used as the key when computing the list of selected columns. If not set, the name
will be generated according to the column position in the layout definition, but as this definition may change, it is recommanded to set specific
names for better maintenance and upgrade.

The columns that should not be selected by defaut hold the additional parameter "selectedByDefault", and it is set to "false" as all columns (and
rows) are considered selected by default. Hence the "description" and "subjects" columns are not selected by default, and shown in the left
selector when displaying this layout in mode "edit_sort_infos" or "edit_sort_infos_map".

Properties defined on the layout in mode "edit_columns" are used by the layout template .layout_column_selection_template.xhtml

Properties defined on the layout and columns in mode "edit_sort_infos" or "edit_sort_infos_map" are used by the layout template layout_sort_info
. This template filters presentation of columns that do not hold the property "showInSortInfoSelection" set to "true" as somes_template.xhtml

columns may not support sorting (for instance, as sorting cannot be done on the "subjects" complex property, the associated column should not
be made available in the sort selection widget).

The column selection and sort information will be taken into account by the content view if:

the template displaying results binds this information to the backing bean holding the values, for instance:

<nxu:set var="contentViewId" value="advanced_search">
<nxu:set var="contentViewName" value="advanced_search">

 <ui:decorate template="/incl/content_view.xhtml">
 <ui:param name="selectedResultLayoutColumns"
 value="#{documentSearchActions.selectedLayoutColumns}" />
 <ui:param name="contentViewSortInfos"
 value="#{documentSearchActions.searchSortInfos}" />
[...]

or the content view definition holds these bindings, for instance:

http://doc.nuxeo.com/x/GATF
http://hg.nuxeo.org/nuxeo/nuxeo-jsf/file/5.4/nuxeo-platform-webapp-base/src/main/resources/nuxeo.war/layouts/layout_column_selection_template.xhtml
http://hg.nuxeo.org/nuxeo/nuxeo-jsf/file/5.4/nuxeo-platform-webapp-base/src/main/resources/nuxeo.war/layouts/layout_sort_infos_template.xhtml
http://hg.nuxeo.org/nuxeo/nuxeo-jsf/file/5.4/nuxeo-platform-webapp-base/src/main/resources/nuxeo.war/layouts/layout_sort_infos_template.xhtml

 Nuxeo Enterprise Platform 5.4 Documentation

267
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

<contentView name="advanced_search">

 <coreQueryPageProvider>
 [...]
 <pageSize>20</pageSize>
 <sortInfosBinding>
 #{documentSearchActions.searchSortInfos}
 </sortInfosBinding>
 </coreQueryPageProvider>

 [...]

 <resultLayouts>
 <layout name="search_listing_ajax" title="document_listing"
 translateTitle="true" iconPath="/icons/document_listing_icon.png" />
 [...]
 </resultLayouts>
 <resultColumns>
 #{documentSearchActions.selectedLayoutColumns}
 </resultColumns>

 [...]
</contentView>

Faceted Search

Overview

The faceted search adds a new way to browse the whole document repository using visual filters on metadata.
The new tab appears on the left, just after the navigation tree.

Here is a screenshot of the default faceted search:

Saved Faceted Searches

The saved searches are stored in the personal workspace of the user who saved the search.

The folder where the searches are stored can be configured through an extension point on the :FacetedSearchService

The Faceted Search is available in Nuxeo since version 5.4.

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

268
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

<extension
target="org.nuxeo.ecm.platform.faceted.search.jsf.service.FacetedSearchService"
 point="configuration">

 <configuration>
 <rootSavedSearchesTitle>Saved Searches</rootSavedSearchesTitle>
 </configuration>

</extension>

How to contribute a new Faceted Search

We will see how to do that with the default faceted search in Nuxeo DM as an example.

Content views contribution

A Faceted Search is just a Content view with the flag set.FACETED_SEARCH
When defining the Content view for your faceted search, you'll end up defining the that will be the definition of theCoreQueryPageProvider
query done to retrieve the documents matching your criteria.

To register your content view as a faceted search, don't forget to add the correct flag in the contribution:

<flags>
 <flag>FACETED_SEARCH</flag>
</flags>

To understand all the parameters of the contribution, have a look at: Content Views

The key attributes are:

docType: define which Document type to use to populate the values in the query
searchLayout: define which layout will be rendered for this faceted search

Here is the whole contribution of the Content view used for the default faceted search in Nuxeo DM:

<extension target="org.nuxeo.ecm.platform.ui.web.ContentViewService"
 point="contentViews">

 <contentView name="faceted_search_default">
 <title>label.faceted.search.default</title>
 <translateTitle>true</translateTitle>

 <coreQueryPageProvider>
 <property name="coreSession">#{documentManager}</property>
 <whereClause docType="FacetedSearchDefault">
 <fixedPart>
 ecm:mixinType != 'HiddenInNavigation' AND
 ecm:mixinType != 'HiddenInFacetedSearch' AND ecm:isCheckedInVersion = 0
 AND ecm:currentLifeCycleState != 'deleted'
 </fixedPart>
 <predicate parameter="ecm:fulltext" operator="FULLTEXT">
 <field schema="faceted_search_default" name="ecm_fulltext" />
 </predicate>
 <predicate parameter="dc:created" operator="BETWEEN">
 <field schema="faceted_search_default" name="dc_created_min" />

http://doc.nuxeo.com/x/GATF
https://doc.nuxeo.com/display/NXDOC/Content+Views

 Nuxeo Enterprise Platform 5.4 Documentation

269
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

 <field schema="faceted_search_default" name="dc_created_max" />
 </predicate>
 <predicate parameter="dc:modified" operator="BETWEEN">
 <field schema="faceted_search_default" name="dc_modified_min" />
 <field schema="faceted_search_default" name="dc_modified_max" />
 </predicate>
 <predicate parameter="dc:creator" operator="IN">
 <field schema="faceted_search_default" name="dc_creator" />
 </predicate>
 <predicate parameter="dc:coverage" operator="STARTSWITH">
 <field schema="faceted_search_default" name="dc_coverage" />
 </predicate>
 <predicate parameter="dc:subjects" operator="STARTSWITH">
 <field schema="faceted_search_default" name="dc_subjects" />
 </predicate>
 <predicate parameter="ecm:path" operator="STARTSWITH">
 <field schema="faceted_search_default" name="ecm_path" />
 </predicate>
 </whereClause>
 <sort column="dc:title" ascending="true" />
 <pageSize>20</pageSize>
 </coreQueryPageProvider>

 <searchLayout name="faceted_search_default" />

 <useGlobalPageSize>true</useGlobalPageSize>
 <refresh>
 <event>documentChanged</event>
 <event>documentChildrenChanged</event>
 </refresh>
 <cacheKey>only_one_cache</cacheKey>
 <cacheSize>1</cacheSize>

 <resultLayouts>
 <layout name="document_virtual_navigation_listing_ajax"
 title="document_listing" translateTitle="true"
 iconPath="/icons/document_listing_icon.png" />
 </resultLayouts>

 <selectionList>CURRENT_SELECTION</selectionList>
 <actions category="CURRENT_SELECTION_LIST" />

 <flags>
 <flag>FACETED_SEARCH</flag>
 </flags>
 </contentView>

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

270
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

</extension>

Schema and Document type contribution

As seen in the content view we just defined, we need a Document Type, . To be a correct Document Type used in aFacetedSearchDefault
Faceted Search, it must extend the Document Type.FacetedSearch

According to the predicates set in the Content view, we need to add a schema to the new Document Type to handle each predicate.

Schema definition:

<?xml version="1.0"?>
<xs:schema targetNamespace="http://www.nuxeo.org/ecm/schemas/common/"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:nxs="http://www.nuxeo.org/ecm/schemas/common/">

 <xs:include schemaLocation="base.xsd" />

 <xs:element name="ecm_fulltext" type="xs:string" />
 <xs:element name="dc_creator" type="nxs:stringList" />
 <xs:element name="dc_created_min" type="xs:date" />
 <xs:element name="dc_created_max" type="xs:date" />
 <xs:element name="dc_modified_min" type="xs:date" />
 <xs:element name="dc_modified_max" type="xs:date" />

 <xs:element name="dc_coverage" type="nxs:stringList" />
 <xs:element name="dc_subjects" type="nxs:stringList"/>

 <xs:element name="ecm_path" type="nxs:stringList"/>

</xs:schema>

Document Type and Schema registration:

<extension target="org.nuxeo.ecm.core.schema.TypeService" point="schema">
 <schema name="faceted_search_default" src="schemas/faceted_search_default.xsd"
prefix="fsd"/>
</extension>

<extension target="org.nuxeo.ecm.core.schema.TypeService" point="doctype">

 <doctype name="FacetedSearchDefault" extends="FacetedSearch">
 <schema name="faceted_search_default"/>
 <facet name="HiddenInFacetedSearch"/>
 </doctype>

</extension>

Search Layout contribution

The search layout is just a standard layout. It's the layout that will be used in the left tab to display all the widgets that will perform the search.

Define your widgets and map them to the right field on your newly created schema.

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

271
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

For instance, for a filter on the property, the widget looks like:dc:creator

<widget name="people_search" type="faceted_search_wrapper">
 <labels>
 <label mode="any">label.faceted.search.peopleSearch</label>
 </labels>
 <translated>true</translated>
 <subWidgets>
 <widget name="dc_creator" type="faceted_search_users_suggestion">
 <labels>
 <label mode="any">label.dublincore.creator</label>
 </labels>
 <fields>
 <field>fsd:dc_creator</field>
 </fields>
 <properties widgetMode="any">
 <property name="userSuggestionSearchType">USER_TYPE</property>
 <property name="displayHorizontally">false</property>
 <property name="hideSearchTypeText">true</property>
 <property name="displayHelpLabel">false</property>
 </properties>
 </widget>
 </subWidgets>
</widget>

Then you just need to create the layout referenced in the Content view:

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

272
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

<extension target="org.nuxeo.ecm.platform.forms.layout.WebLayoutManager"
 point="layouts">

 <layout name="faceted_search_default">
 <templates>
 <template mode="any">/layouts/layout_faceted_search_template.xhtml
 </template>
 </templates>
 <rows>
 <row>
 <widget>faceted_searches_selector</widget>
 </row>
 <row>
 <widget>saved_faceted_searches_selector</widget>
 </row>
 <row>
 <widget>actions_bar</widget>
 </row>
 <row>
 <widget>text_search</widget>
 </row>
 <row>
 <widget>date_search</widget>
 </row>
 <row>
 <widget>people_search</widget>
 </row>
 <row>
 <widget>categorization_search</widget>
 </row>
 <row>
 <widget>path_search</widget>
 </row>
 <row>
 <widget>actions_bar</widget>
 </row>
 </rows>
 </layout>
</extension>

Available widgets types

Here are the widgets types defined in the Faceted Search module. You can reuse them in your own faceted search contribution. You can also use
all the existing widget already defined in Nuxeo.

You can have a look to see how the widgets are used in the default faceted search.here

If you depend on Nuxeo DM, you can use some widgets directly without redefining them (for instance, the ones that do not depend on a metadata
property)

faceted_search_wrapper

This widget is used to wrap other sub widgets. It displays the widget label, and list the sub widgets below according to the wrapperMode.
The sub widgets can use 3 wrapperMode (to be defined in the sub widget properties):

Do not forget to update the attribute of the Content view if you change the layout name.searchLayout

http://doc.nuxeo.com/x/GATF
http://hg.nuxeo.org/addons/nuxeo-platform-faceted-search/file/5.4/nuxeo-platform-faceted-search-dm/src/main/resources/OSGI-INF/faceted-search-layouts-contrib.xml

 Nuxeo Enterprise Platform 5.4 Documentation

273
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

row: the sub widget label is displayed on one row, and the sub widget content on another row.
column: the sub widget label and content are displayed on the same row (default mode if not specified)
noLabel: the sub widget label is not displayed at all.

For instance, here is the definition of the Text search part:

<widget name="text_search" type="faceted_search_wrapper">
 <labels>
 <label mode="any">label.faceted.search.textSearch</label>
 </labels>
 <translated>true</translated>
 <subWidgets>
 <widget name="ecm_fulltext" type="text">
 <labels>
 <label mode="any">label.faceted.search.fulltext</label>
 </labels>
 <translated>true</translated>
 <fields>
 <field>fsd:ecm_fulltext</field>
 </fields>
 <properties widgetMode="edit">
 <property name="wrapperMode">row</property>
 </properties>
 </widget>
 </subWidgets>
</widget>

date_range

Widget used to search on a date range.

<widget name="dc_modified" type="date_range">
 <labels>
 <label mode="any">label.dublincore.modificationDate</label>
 </labels>
 <translated>true</translated>
 <fields>
 <field>fsd:dc_modified_min</field>
 <field>fsd:dc_modified_max</field>
 </fields>
 <properties widgetMode="edit">
 <property name="styleClass">dataInputTextDate</property>
 </properties>
</widget>

faceted_search_users_suggestion

Widget allowing to search and select one or more users with a suggestion box.

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

274
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

<widget name="dc_creator" type="faceted_search_users_suggestion">
 <labels>
 <label mode="any">label.dublincore.creator</label>
 </labels>
 <fields>
 <field>fsd:dc_creator</field>
 </fields>
 <properties widgetMode="any">
 <property name="userSuggestionSearchType">USER_TYPE</property>
 <property name="displayHorizontally">false</property>
 <property name="hideSearchTypeText">true</property>
 <property name="displayHelpLabel">false</property>
 </properties>
</widget>

faceted_searches_selector

Widget displaying all the registered faceted searches. Hidden in case only one faceted search is registered.

<widget name="faceted_searches_selector"
 type="faceted_searches_selector">
 <widgetModes>
 <!-- not shown in edit and view modes -->
 <mode value="view">hidden</mode>
 <mode value="edit">hidden</mode>
 </widgetModes>
</widget>

In this sample, the widget is hidden in view and edit mode, so that the widget is not displayed when you are on the Summary or Edit tab of a
saved search.

saved_faceted_searches_selector

Widget displaying all the saved faceted searches. It displays 2 categories:

Your searches: your saved faceted searches
All searches: all the other users shared saved faceted searches.

The "outcome" property needs to be defined: on which JSF view should we redirect after selecting a saved search.

<widget name="saved_faceted_searches_selector"
 type="saved_faceted_searches_selector">
 <widgetModes>
 <!-- not shown in edit and view modes -->
 <mode value="view">hidden</mode>
 <mode value="edit">hidden</mode>
 </widgetModes>
 <properties widgetMode="any">
 <property name="outcome">faceted_search_results</property>
 </properties>
</widget>

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

275
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

faceted_search_directory_tree

Widget allowing to select one or more values from a Tree constructed from the directory tree specified in the directoryTreeName property.

<widget name="dc_coverage" type="faceted_search_directory_tree">
 <labels>
 <label mode="any">label.faceted.search.coverage</label>
 </labels>
 <translated>true</translated>
 <fields>
 <field>fsd:dc_coverage</field>
 </fields>
 <properties widgetMode="any">
 <property name="directoryTreeName">byCoverageNavigation</property>
 <property name="wrapperMode">noLabel</property>
 </properties>
</widget>

faceted_search_path_tree

Widget allowing to select one or more values from a Tree constructed from the navigation tree.

<widget name="ecm_path" type="faceted_search_path_tree">
 <labels>
 <label mode="any">label.faceted.search.path</label>
 </labels>
 <translated>true</translated>
 <fields>
 <field>fsd:ecm_path</field>
 </fields>
 <properties widgetMode="any">
 <property name="wrapperMode">noLabel</property>
 </properties>
</widget>

actions_bar

This widget is only defined in the module.nuxeo-platform-faceted-search-dm

<widget name="actions_bar" type="template">
 <properties widgetMode="any">
 <property name="template">
 /widgets/faceted_search_actions_widget_template.xhtml
 </property>
 </properties>
 <widgetModes>
 <!-- not shown in edit and view modes -->
 <mode value="view">hidden</mode>
 <mode value="edit">hidden</mode>
 </widgetModes>
</widget>

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

276
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

You can use directly the widget in your custom search layout:

<extension target="org.nuxeo.ecm.platform.forms.layout.WebLayoutManager"
 point="layouts">
 <layout name ="faceted_search_default">
 <templates>
 <template mode="any">/layouts/layout_faceted_search_template.xhtml
 </template>
 </templates>
 <rows>
 ...
 <row>
 <widget>actions_bar</widget>
 </row>
 ...
 </rows>
 </layout>
</extension>

You probably want at least one action bar in your layout to perform the search!

Smart search

This addon adds UI features to build a query and save it in a document.

Smart query configuration

The smart query is designed to work in conjunction with a .content view
This content view search layout displays a selector to help building a query part, and a text area with the existing query parts already aggregated:

The interface is very simple: it can build a query (or query part) and can check if it is in a valid state.SmartQuery

The abstract class holds additional methods for a good interaction with UI JSF components. It is able to store an existingIncrementalSmartQuery
query part, and has getters and setters for the description of a new element to add to the query.

The class implements the interface and generates aIncrementalSmartNXQLQuery org.nuxeo.ecm.platform.smart.query.SmartQuery
query using the NXQL syntax.

The seam component named exposes an instance of it, given an existing query part, and is used to update it on ajax"smartNXQLQueryActions"
calls.

The Smart Search addon is available in Nuxeo since version 5.4.

http://doc.nuxeo.com/x/GATF
http://hg.nuxeo.org/addons/nuxeo-platform-smart-search/file/5.4/nuxeo-platform-smart-query-api/src/main/java/org/nuxeo/ecm/platform/smart/query/SmartQuery.java
http://hg.nuxeo.org/addons/nuxeo-platform-smart-search/file/5.4/nuxeo-platform-smart-query-api/src/main/java/org/nuxeo/ecm/platform/smart/query/IncrementalSmartQuery.java
http://hg.nuxeo.org/addons/nuxeo-platform-smart-search/file/5.4/nuxeo-platform-smart-query-jsf/src/main/java/org/nuxeo/ecm/platform/smart/query/jsf/IncrementalSmartNXQLQuery.java
http://hg.nuxeo.org/addons/nuxeo-platform-smart-search/file/5.4/nuxeo-platform-smart-query-jsf/src/main/java/org/nuxeo/ecm/platform/smart/query/jsf/SmartNXQLQueryActions.java

 Nuxeo Enterprise Platform 5.4 Documentation

277
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

The complete list fo layouts used to generate this screen is available here: .smart-query-layouts-contrib.xml

The content view is configured to use the layout named "nxql_incremental_smart_query" as a search layout, and this content view is referenced
both in the search form and search results templates. http://hg.nuxeo.org/addons/nuxeo-platform-smart-search/file/5.4/nuxeo-platform-smart-quer
y-jsf/src/main/resources/OSGI-INF/smart-query-contentviews-contrib.xml

The easiest way to customize available query conditions is to override the definition of the layout named "incremental_smart_query_selection".
This layout uses the template that accepts one property named "hideNotOperator".incremental_smart_query_selection_layout_template.xhtml
This property, if set to true, will hide the selection of the 'NOT' word that can be added in front of each criterion. If you do so, operators should
include negative operators.

Here is an explanation on how to define this layout widgets, that need to be of type "incremental_smart_query_condition" to ensure a good
behaviour with other layouts.

As a simple example, let's have a look at the widget to add a condition on the title:

<widget name="nxql_smart_query_condition_title"
 type="incremental_smart_query_condition">
 <labels>
 <label mode="any">title</label>
 </labels>
 <translated>true</translated>
 <properties widgetMode="edit">
 <property name="searchField">dc:title</property>
 <propertyList name="availableOperators">
 <value>CONTAINS</value>
 <value>LIKE</value>
 <value>=</value>
 </propertyList>
 </properties>
 <subWidgets>
 <widget name="title" type="text">
 <fields>
 <field>stringValue</field>
 </fields>
 </widget>
 </subWidgets>
</widget>

The properties "searchField" and "availableOperators" are used to set the left expression of the condition and the operator. The subwidget is a
standard widget of type "text". It is bound to the "stringValue" field so it will be stored in the smart query instance field with the same name. Other
additional properties supported by the "text" widget type can be added here (for instance, the "required" or "styleClass" properties).

Here is the complete list of available field bindings:

booleanValue
stringValue
stringListValue
stringArrayValue
datetimeValue
otherDatetimeValue (to be used in conjunction with datetimeValue)
dateValue
otherDateValue (to be used in conjunction with dateValue)
integerValue
floatValue (to bind a Double instance)

As a more complex example, let's have a look at the widget used to add a condition on the modification date:

http://doc.nuxeo.com/x/GATF
http://hg.nuxeo.org/addons/nuxeo-platform-smart-search/file/5.4/nuxeo-platform-smart-query-jsf/src/main/resources/OSGI-INF/smart-query-layouts-contrib.xml
http://hg.nuxeo.org/addons/nuxeo-platform-smart-search/file/5.4/nuxeo-platform-smart-query-jsf/src/main/resources/OSGI-INF/smart-query-contentviews-contrib.xml
http://hg.nuxeo.org/addons/nuxeo-platform-smart-search/file/5.4/nuxeo-platform-smart-query-jsf/src/main/resources/OSGI-INF/smart-query-contentviews-contrib.xml
http://hg.nuxeo.org/addons/nuxeo-platform-smart-search/file/5.4/nuxeo-platform-smart-query-jsf/src/main/resources/nuxeo.war/layouts/incremental_smart_query_selection_layout_template.xhtml

 Nuxeo Enterprise Platform 5.4 Documentation

278
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

<widget name="nxql_smart_query_condition_modified"
 type="incremental_smart_query_condition">
 <labels>
 <label mode="any">label.dublincore.modified</label>
 </labels>
 <translated>true</translated>
 <properties widgetMode="edit">
 <property name="searchField">dc:modified</property>
 <propertyList name="availableOperators">
 <value>BETWEEN</value>
 <value><</value>
 <value>></value>
 </propertyList>
 </properties>
 <subWidgets>
 <widget name="modified_before" type="datetime">
 <fields>
 <field>dateValue</field>
 </fields>
 <properties widgetMode="edit">
 <property name="required">true</property>
 <property name="format">#{nxu:basicDateFormater()}</property>
 </properties>
 </widget>
 <widget name="and" type="text">
 <widgetModes>
 <mode value="any">
 #{not empty value.conditionalOperator and
 value.conditionalOperator!='BETWEEN'?'hidden':'view'}
 </mode>
 </widgetModes>
 <properties mode="any">
 <property name="value">
 &nbsp;#{messages['label.and']}&nbsp;
 </property>
 <property name="escape">false</property>
 </properties>
 </widget>
 <widget name="modified_after" type="datetime">
 <fields>
 <field>otherDateValue</field>
 </fields>
 <widgetModes>
 <mode value="any">
 #{not empty value.conditionalOperator and
 value.conditionalOperator!='BETWEEN'?'hidden':mode}
 </mode>
 </widgetModes>
 <properties widgetMode="edit">
 <property name="required">true</property>
 <property name="format">#{nxu:basicDateFormater()}</property>
 </properties>
 </widget>
 </subWidgets>
</widget>

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

279
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

It is more complex as some subwidgets should not be shown depending on the chosen operator: when operator "BETWEEN" is selected, all of
the three subwidgets should be displayed, whereas when other operators are selected, only the first subwidget should be shown. This is achieved
by setting the widget mode according to the selected value.

Let's have a close look at the condition . In"#{not empty value.conditionalOperator and value.conditionalOperator!='BETWEEN'?'hidden':mode}"
this expression, "value" references the value manipulated by the widget (e.g. the smart query instance) and "mode" references the mode as
passed to the layout tag. Both of these values are made available by the layout system. Here, if the conditional operator is not empty, and is
different from 'BETWEEN', the widget should be hidden. Otherwise, it can be shown in the originally resolved mode. The widgets shown when the
conditional operator is empty should be suitable for the first operator within the list of available operators.

Smart folder configuration

The smart folder creation and edition pages is very close to the smart search form. It reuses the same widget types, including some adjustments
since the bound values are kept in its properties instead of a backing seam component. Its layout definition is here: smart-folder-layouts-contrib.x

. It also includes the definition of a widget in charge of displaying the content view results.ml

Note that it needs another content view to be defined (see) so that this content view uses the query, sortsmart-folder-contentviews-contrib.xml
information, result columns and page size as set on the document properties (note the usage of tags parameter, sortInfosBinding, resultColumns
and pageSizeBinding).

Result layout, column and sort selection

The layout used to display the column selection, the sort information selection, and to display the search results, is the generic layout
"search_listing_layout" also used in the advanced search form. If it is changed, it needs to be kept consistent between all the places referencing it:

the smart search form
the smart query content view result layout and result columns binding
the smart folder layout in edit mode
the smart folder content view result layout and result columns binding (displayed via its layout in view mode)

Please refer to the documentation for more information about this layout customization.Advanced search

Security Policy Service
The Security Policy Service provides an extension point to plug custom security policies that do not rely on the standard ACLs for security. For
instance, it can be used to define permissions according to the document metadata, or to information about the logged in user.

Security policy architecture

A security policy is a class implementing the interface; it is recommended to extend org.nuxeo.ecm.core.security.SecurityPolicy org
 for future compatibility..nuxeo.ecm.core.security.AbstractSecurityPolicy

An EL bug will not allow you to use a non-static value at the second position in the conditional expression: w#{condition?mode:'hidden'}
ill throw an error. But placing the variable "mode" at the end of the expression is ok: .#{not condition?'hidden':mode}

http://doc.nuxeo.com/x/GATF
http://hg.nuxeo.org/addons/nuxeo-platform-smart-search/file/5.4/nuxeo-platform-smart-folder-jsf/src/main/resources/OSGI-INF/smart-folder-layouts-contrib.xml
http://hg.nuxeo.org/addons/nuxeo-platform-smart-search/file/5.4/nuxeo-platform-smart-folder-jsf/src/main/resources/OSGI-INF/smart-folder-layouts-contrib.xml
http://hg.nuxeo.org/addons/nuxeo-platform-smart-search/file/5.4/nuxeo-platform-smart-folder-jsf/src/main/resources/OSGI-INF/smart-folder-contentviews-contrib.xml
http://www.nuxeo.org/api/nuxeo/5.4/javadoc/org/nuxeo/ecm/core/security/SecurityPolicy.html

 Nuxeo Enterprise Platform 5.4 Documentation

280
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

The class must be registered through the extension point of the componentpolicies org.nuxeo.ecm.core.security.SecurityService
.

A security policy has two important aspects, materialized by two different methods of the interface:

how security is checked on a given document (method),checkPermission
how security is applied to NXQL searches (method).getQueryTransformer

Document security check

To check security on a given document, Nuxeo Core calls with a number of parameters, among which the document, thecheckPermission
user and the permission to check, on all the security policies registered. The policies should return or based onAccess.DENY Access.UNKNOWN
the information provided. If is returned, then access to the document (for the given permission) will be denied. If Access.DENY Access.UNKNOW

 is returned, then other policies will be checked. Finally if all policies return then standard Nuxeo EP ACLs will be checked.N Access.UNKNOWN

There is a third possible value, , which can immediately grant access for the given permission, but this bypasses ACL checks.Access.GRANT
This is all right for most permissions but not for the permission, because is used for NXQL searches in which case it'sBrowse Browse
recommended to implement instead (see below).getQueryTransformer

Note that receives a document which is a instance, different from and at acheckPermission org.nuxeo.ecm.core.model.Document
lower level than the usual manipulated by user code.org.nuxeo.ecm.core.api.DocumentModel

NXQL security check

All NXQL queries have ACL-based security automatically applied with the permission (except for superusers).Browser

A security policy can modify this behavior but only by adding new restrictions in addition to the ACLs. To do so, it can simply implement the chec
 described above, but this gets very costly for big searches. The efficient approach is to make return kPermission isExpressibleInQuery tr

 and implement .ue getQueryTransformer

The method returns a instance, which is a class with one method taking agetQueryTransformer SQLQuery.Transformer transform
NXQL query in the form of a abstract syntax tree. It should transform this tree in orderorg.nuxeo.ecm.core.query.sql.model.SQLQuery
to add whatever restrictions are needed. Note that ACL checks will always be applied after this transformation.

Example security policy contribution

To register a security policy, you need to write a contribution specifying the class name of your implementation.

<?xml version="1.0"?>
<component name="com.example.myproject.securitypolicy">

 <extension target="org.nuxeo.ecm.core.security.SecurityService"
 point="policies">

 <policy name="myPolicy"
 class="com.example.myproject.NoFileSecurityPolicy" order="0" />

 </extension>

</component>

Here is a sample contributed class:

import org.nuxeo.ecm.core.query.sql.model.*;
import org.nuxeo.ecm.core.query.sql.NXQL;
import org.nuxeo.ecm.core.security.AbstractSecurityPolicy;
import org.nuxeo.ecm.core.security.SecurityPolicy;

/**
 * Sample policy that denies access to File objects.
 */

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

281
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

public class NoFileSecurityPolicy extends AbstractSecurityPolicy implements
SecurityPolicy {

 @Override
 public Access checkPermission(Document doc, ACP mergedAcp,
 Principal principal, String permission,
 String[] resolvedPermissions, String[] additionalPrincipals) {
 // Note that doc is NOT a DocumentModel
 if (doc.getType().getName().equals("File")) {
 return Access.DENY;
 }
 return Access.UNKNOWN;
 }

 @Override
 public boolean isRestrictingPermission(String permission) {
 // could only restrict Browse permission, or others
 return true;
 }

 @Override
 public boolean isExpressibleInQuery() {
 return true;
 }

 @Override
 public SQLQuery.Transformer getQueryTransformer() {
 return NO_FILE_TRANSFORMER;
 }

 public static final Transformer NO_FILE_TRANSFORMER = new NoFileTransformer();

 /**
 * Sample Transformer that adds {@code AND ecm:primaryType <> 'File'} to the
query.
 */
 public static class NoFileTransformer implements SQLQuery.Transformer {

 /** {@code ecm:primaryType <> 'File'} */
 public static final Predicate NO_FILE = new Predicate(
 new Reference(NXQL.ECM_PRIMARYTYPE), Operator.NOTEQ, new
StringLiteral("File"));

 @Override
 public SQLQuery transform(Principal principal, SQLQuery query) {
 WhereClause where = query.where;
 Predicate predicate;
 if (where == null || where.predicate == null) {
 predicate = NO_FILE;
 } else {
 // adds an AND ecm:primaryType <> 'File' to the WHERE clause
 predicate = new Predicate(NO_FILE, Operator.AND, where.predicate);
 }
 // return query with updated WHERE clause
 return new SQLQuery(query.select, query.from, new WhereClause(predicate),
 query.groupBy, query.having, query.orderBy, query.limit,
query.offset);
 }
 }

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

282
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

}

Nuxeo Theme engine

Nuxeo UI Frameworks
Nuxeo uses several UI frameworks...

Seam and JSF webapp overview
GWT Integration
Extending The Shell

Shell Features
Shell Commands
Shell Namespaces
Shell Documentation

WebEngine (JAX-RS)
Session And Transaction Management
WebEngine Tutorials

Nuxeo Android Connector
Nuxeo Automation client
Android Connector and Caching
Android Connector additional Services
DocumentProviders in Android Connector
Android SDK Integration
Nuxeo Layout in Android
SDK provided base classes

Nuxeo Flex Connector
AMF Mapping in Nuxeo
Build and deploy Nuxeo Flex Connect
Using Flex Connector

Seam and JSF webapp overview

Nuxeo EP provides a web framework to build business applications for thin clients.

This framework is based on the standard JEE view technology: Java Server Faces.

Nuxeo JSF: technical stack

Nuxeo JSF framework integrates several technologies in order to make the development of Web Application fast and efficient.

Nuxeo JSF stack includes (as of Nuxeo 5.4) :

JSF 1.2 (SUN RI) as MVC and UI component model
Facelets as rendering engine and templating system
Ajax4JSF to add support for Ajax behaviors
RichFaces (3.3) for high level UI components
Seam (2.1) as Web Framework

Inside Nuxeo EP, Seam Framework is used only for the JSF (client) layer.

Usage of Seam has several benefits :

usage of JSF is simpler
powerful context management
dependency injection and Nuxeo Service lookup via injection
Nuxeo Web Component are easily overridable
decoupling of Web Components (that can communicate via Seam event bus)

Nuxeo JSF framework also comes with additional concepts and tools :

Action service is used to make buttons, tabs and views configurable
Layout and Content View allow to define how you want to see documents and listings
URL Service : Nuxeo provides REST URLs for all pages so that you can bookmark pages or send via email a link to a specific view on a
specific document
Nuxeo Tag Libraries : extend existing tags and provides new Document Oriented tags
Theme engine

Nuxeo JSF: approach

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

283
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

We built Nuxeo JSF framework with two main ideas in mind:

make the UI simple
make the UI pluggable

For the first point, we choose to have an "File Explorer" like navigation.

So you have tools (tree, breadcrumb, search, tags) to navigate in a Document Repository and when on a Document you can see several views on
this document (Summary, Relations, Workflows, Rights, History ...).

We also choose to make the UI very pluggable, because each project needs to have a slightly different UI.

In order to achieve that, each page/view is in fact made of several fragments that are assembled based on the context.

This means you can easily add, remove or change a button, a link, a tab or a HTML/JSF block.

You don't need to change or override Nuxeo code for that, neither do you need to change the default Nuxeo templates.

The assembly of the fragments is governed by "Actions", so you can change the filters and conditions for each fragment.

Of course each project also needs to define it's own views on Document, for that we use the Layout and Content View system.

All this means that you can start from a standard Nuxeo DM, and with simple configuration have a custom UI.

Nuxeo JSF : key concepts

GWT Integration

This documents assumes you are familiar with GWT and have the basic knowledge on how to build GWT applications. You can find a complete
introduction to GWT here:

http://code.google.com/webtoolkit/gettingstarted.html

GWT is a web toolkit to build rich clients in Java programming language. The Java code is transcoded in JavaScript at build time so the build
process generates a fully HTML+JavaScript application ready to be deployed on an HTTP server.

GWT applications may contain both server side code (which is Java byte code) and client side code (which is Java in development mode but is
transcoded in JavaScript at build time).

When using the GWT RPC mechanism you usually need to share the client code that makes up your application model (the data objects). This
code is both compiled to JavaScript and to Java byte code.

Developing a GWT Application
Requirements
Creating a Hello World Application

Deploying the GWT Application on a Nuxeo Server
Accessing your GWT module from the client

Using GWT RPC mechanism in a Nuxeo GWT module.
Using Other Server / Client Communication Mechanisms.

How is this working?
Example of a pom.xml

Developing a GWT Application

Requirements

To develop a GWT based application for Nuxeo, you need first to install the GWT Eclipse plugin. Here is the list of update sites for each
supported Eclipse distribution:

Eclipse 3.6 (Helios)
Eclipse 3.5 (Galileo)
Eclipse 3.4 (Ganymede)
Eclipse 3.3 (Europa)

Also you will need a Nuxeo version >= 5.3.1-SNAPSHOT for your Nuxeo dependencies and to be able to deploy your GWT applications.

Creating a Hello World Application

Create a new . Uncheck Use in the wizard page. The GWT wizard will create a project structure like:Web Application Project Google App Engine

Only a small subset of JRE classes can be transcoded by GWT to JavaScript (e.g. most of the classes in and java.lang java.util
).s

http://doc.nuxeo.com/x/GATF
http://code.google.com/webtoolkit/gettingstarted.html
http://dl.google.com/eclipse/plugin/3.6
http://dl.google.com/eclipse/plugin/3.5
http://dl.google.com/eclipse/plugin/3.4
http://dl.google.com/eclipse/plugin/3.3

 Nuxeo Enterprise Platform 5.4 Documentation

284
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

src
 org/my/app/client
 org/my/app/server
 your_module.gwt.xml
war
 WEB-INF/web.xml
 your_module.css
 your_module.html

The client package will contain the Java code that must be transcoded into JavaScript. The data objects defined here can be shared on the server
side too. The server package will contain code that will be used on the server side (as Java byte code).

As you noticed, a " " directory was generated in the module root. Here you need to define any servlet or filter used in development mode (inwar
the file). Also this directory contains the HTML home page of your application.web.xml

When working with a Nuxeo Server, what you need is to be able to start a Nuxeo Server when GWT starts the application in development mode.
If you don't have a running Nuxeo inside the same Java process as the debugged application, you cannot use Nuxeo APIs or access the
repository to be able to tests your GWT servlets.

To achieve this you need to follow these steps:

1. Add the JARs of and v. 1.1 classifier "all" to your project classpath. When usingnuxeo-webengine-gwt nuxeo-distribution-tools
Maven, this can be done by the following POM fragment:

<dependency>
 <groupId>org.nuxeo.ecm.webengine</groupId>
 <artifactId>nuxeo-webengine-gwt</artifactId>
</dependency>
<dependency>
 <groupId>org.nuxeo.build</groupId>
 <artifactId>nuxeo-distribution-tools</artifactId>
 <classifier>all</classifier>
 <version>1.1</version>
 <scope>test</scope>
</dependency>

2. Add to a filter as following:war/WEB-INF/web.xml

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

285
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

<filter>
 <display-name>WebEngine Authentication Filter</display-name>
 <filter-name>NuxeoAuthenticationFilter</filter-name>
 <filter-class>
 org.nuxeo.ecm.webengine.gwt.dev.NuxeoLauncher
 </filter-class>
 <init-param>
 <param-name>byPassAuthenticationLog</param-name>
 <param-value>true</param-value>
 </init-param>
 <init-param>
 <param-name>securityDomain</param-name>
 <param-value>nuxeo-webengine</param-value>
 </init-param>
</filter>
<filter-mapping>
 <filter-name>NuxeoAuthenticationFilter</filter-name>
 <url-pattern>/*</url-pattern>
</filter-mapping>

This filter will be used to start an when the GWT application is started in development mode. You can find more detailsEmbedded Nuxeo Server
on how to control what version of Nuxeo is started, where the home directory will be created, etc. in the sources in nuxeo-webengine-gwt org

./nuxeo/ecm/webengine/gwt/web.xml

This filter will load any JAR or Project found in your classpath as a Nuxeo Bundle if the JAR contains a valid OSGi Manifest. So if your current
project is a Nuxeo Plugin, it will be correctly deployed on the embedded Nuxeo.

If you want to deploy additional Nuxeo XML components on the embedded server, you need to extend the NuxeoLauncher and implement the
method where you can deploy additional test components using the default mechanism in Nuxeo. (e.g. frameworkStarted() Framework.get

).Runtime().getContext().deploy(url)

Now you can start a debugging session by right-clicking the project and then clicking on .Debug As > Web Application

The Embedded Nuxeo will be started before the GWT application is initialized.

By default the web server in the embedded Nuxeo will listen on localhost:8081.

So you can connect to the address for the WebEngine UI if you want to introspect the repository.

The Nuxeo Server Embedded home directory used by default is

{user.home}/.nxserver-gwt

Now in your GWT servlets you can use calls to Nuxeo API, create and browse documents, etc. Of course you need to add the required
dependencies on your project class path.

Deploying the GWT Application on a Nuxeo Server

To be able to deploy your GWT in a real Nuxeo Server you need to package it as a Nuxeo bundle that:

1. defines an OSGi in your that points to .Bundle-Activator MANIFEST.MF org.nuxeo.ecm.webengine.gwt.GwtBundleActivator

2. contains the generated GWT application files into a directory named " " at the root of the JAR.gwt-war

This filter is only usable in development mode and it must not be deployed on a real server.

If you need a custom activator you can override the and add you own login in the method aftergwtBundleActivator start()
calling , or you can directly implement and call method the following code: super.start() BundleActivator instart() GwtBund

.leActivator.install(context)

http://doc.nuxeo.com/x/GATF
https://doc.nuxeo.com/display/CORG/Embedding+Nuxeo

 Nuxeo Enterprise Platform 5.4 Documentation

286
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

So the JAR will have a content similar to the following one:

your-gwt-module.jar
 META-INF/MANIFEST.MF
 OSGI-INF/deployment-fragment.xml
 ...
 org/
 gwt-war/
 your_gwt_module.html
 ...

Then simply put your JAR into a Nuxeo Server. (Make sure the server contains in bundles directory).nuxeo-webengine-gwt.jar

At first startup the " " directory from your JAR will be copied into { where {web} is the webengine root directory.gwt-war web}/root.war/gwt/

At each startup, the GWT activator you added to your bundle will check if it needs to unzip again the " " directory content.gwt-war

This is true if the timestamp of the bundle JAR will be greater than the timestamp of the file {web}/root.war/gwt/.metadata/{your_bundl
}.e_symbolic_name

This way if you upgrade the JAR the GWT application files will be updated too.

At the end of this document you will find a fragment of a POM that can be used to correctly build a Nuxeo GWT module and that can also
generate the GWT project in eclipse by running " ".mvn eclipse:eclipse

Accessing your GWT module from the client

But how to expose the GWT application to clients?

For this you need to create a simple WebEngine module that expose the GWT application through a JAX-RS resource.

(You can either use WebEngine objects or raw JAX-RS resources - or even a custom servlet your registered in).web.xml

If your are using a WebEngine Module you only need to override the abstract class: andorg.nuxeo.ecm.webengine.gwt.GwtResource
implement a method to server the GWT application home page like:@GET

@WebObject(type="myGwtApp")
public class MyGwtApp extends GwtResource {
 @GET @Produces("text/html")
 public Object getIndex() {
 return getTemplate("studio.ftl");
 }
}

You can do the same from a raw JAX-RS resource by integrating the method from into your resource:GwtResource

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

287
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

1.

2.

 @GET
 @Path("{path:.*}")
 public Response getResource(@PathParam("path") String path) {
 //System.out.println(">>> "+GWT_ROOT.getAbsolutePath());
 // avoid putting automatic no cache headers
 ctx.getRequest().setAttribute("org.nuxeo.webengine.DisableAutoHeaders",
"true");
 File file = new File(GwtBundleActivator.GWT_ROOT, path);
 if (file.isFile()) {
 ResponseBuilder resp = Response.ok(file);
 String fpath = file.getPath();
 int p = fpath.lastIndexOf('.');
 String ext = "";
 if (p > -1) {
 ext = fpath.substring(p+1);
 }
 String mimeType = ctx.getEngine().getMimeType(ext);
 if (mimeType == null) {
 mimeType = "text/plain";
 }
 resp.type(mimeType);
 return resp.build();
 }
 return Response.status(404).build();
 }

This method simply locates the file requested by the GWT client (in {) to send it to the client.web}/root.war/gwt

You can apply the same logic if you prefer to write a servlet as an entry point for your GWT module.

Using GWT RPC mechanism in a Nuxeo GWT module.

If you want to use GWT RPC inside Nuxeo GWT modules you must be sure your RPC servlet classes extends org.nuxeo.ecm.webengine.g
 instead of .wt.WebEngineGwtServlet RemoteServiceServlet

This is required since the default is assuming a WAR structure that is not present in a Nuxeo Server.RemoteServiceServlet

The locates correctly the resources needed by the GWT Serializer and then it dispatches the request back to WebEngineGwtServlet RemoteS
.erviceServlet

And also don't forget to define your RPC servlets in the ! You can use for this the regular approach in Nuxeo (through web.xml deployment-fr
 files).agment.xml

Note: Your GWT RPC servlets are executed in an authenticated context since the Nuxeo Authentication filter is in place.

Using Other Server / Client Communication Mechanisms.

Apart the GWT RPC mechanism you can communicate with the server using any mechanism you need as far as you define a servlet and a
protocol between your client and server applications.

Event if custom communication works well in web mode (when the application is deployed in a real Nuxeo server) you will have problems to
debug and use them in development mode (when Nuxeo is embedded in GWT IDE). This is because of the SOP (Same origin Policy) problems in
Ajax applications.

As I said before the embedded Nuxeo server will listen at a different port (by default to 8081) than the GWT embedded HTTP server. This means
you will not be able to do calls from GWT client to servlets registered in the embedded Nuxeo server since they belong to another domain (i.e.
different port).

There are 2 ways of fixing the problem and make it work in development mode:

Register your servlets in the GWT HTTP server (in)war/WEB-INF/web.xml
This method has many limitations since the servlet you want to use may need to be started by Nuxeo - or you may want to use Nuxeo
JAX-RS or WebEngine objects.

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

288
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

2. Use the redirection service provided by . This is the recommended method since you don't have any limitation.nuxeo-webengine-gwt

How is this working?

Let say your servlet is installed at . Doing an asynchronous HTTP request from GWT to this URL will not work ashttp://localhost:8081/myservice
expected because of the SOP limitation.

Instead of this you can rewrite the URL by pre-pending a prefix "redirect" to your servlet path and using the GWT HTTP server domain like this:
http://localhost:*8080*/*redirect*/myservice.

The call will be transparently redirected to the Nuxeo HTTP server (and the "redirect" prefix will be removed).

In GWT client code you can use GWT helpers to detect if you are in development mode or not and to use the correct URL in each case. You can
for example send the service URL from the server at page load by using javascript to inject the service URL in your module HTML page or you
can simply compute the service URL based on the GWT module URL - see GWT.getModuleBaseURL() or GWT.getHostPageBaseURL().

To know if you are in development you can use on the client side or GWT.isScript() "true".equals(System.getProperty("nuxeo.gw
 on the server side.t_dev_mode"))

You can also configure the prefix used for redirection and enabling tracing of the redirected requests (that will be printed in the Eclipse console).
This can be configured into by adding some parameters to filter:war/WEB-INF/web.xml NuxeoLauncher

<!-- enable redirected request content tracing -->
<init-param>
 <param-name>redirectTraceContent</param-name>
 <param-value>true</param-value>
</init-param>
<init-param>
 <param-name>redirectPrefix</param-name>
 <param-value>/foo/bar</param-value>
</init-param>

If you want to trace only headers use "redirectTrace" instead of "redirectTraceContent"

Example of a pom.xml

 <properties>
 <gwtVersion>2.0</gwtVersion>
 <gwt.module>org.your_gwt_module</gwt.module>
 </properties>

 <dependencies>
 <dependency>
 <groupId>org.osgi</groupId>
 <artifactId>osgi-core</artifactId>
 </dependency>
 <dependency>
 <groupId>org.nuxeo.runtime</groupId>
 <artifactId>nuxeo-runtime</artifactId>
 </dependency>
 <dependency>
 <groupId>org.nuxeo.common</groupId>
 <artifactId>nuxeo-common</artifactId>
 </dependency>
 <dependency>
 <groupId>org.nuxeo.ecm.webengine</groupId>
 <artifactId>nuxeo-webengine-gwt</artifactId>
 </dependency>
 <dependency>

http://doc.nuxeo.com/x/GATF
http://localhost:8081/myservice

 Nuxeo Enterprise Platform 5.4 Documentation

289
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

 <groupId>org.nuxeo.build</groupId>
 <artifactId>nuxeo-distribution-tools</artifactId>
 <classifier>all</classifier>
 <version>1.1</version>
 <scope>test</scope>
 </dependency>

 <dependency>
 <groupId>javax.servlet</groupId>
 <artifactId>servlet-api</artifactId>
 </dependency>

 <dependency>
 <groupId>com.google.gwt</groupId>
 <artifactId>gwt-servlet</artifactId>
 <version>${gwtVersion}</version>
 <scope>compile</scope>
 </dependency>
 <dependency>
 <groupId>com.google.gwt</groupId>
 <artifactId>gwt-user</artifactId>
 <version>${gwtVersion}</version>
 <scope>provided</scope>
 </dependency>
 <dependency>
 <groupId>com.google.gwt</groupId>
 <artifactId>gwt-dev</artifactId>
 <version>${gwtVersion}</version>
 <scope>runtime</scope>
 </dependency>

 </dependencies>

 <build>
 <!-- gwt compiler needs the java sources to correctly work -->
 <resources>
 <resource>
 <directory>src/main/java</directory>
 </resource>
 <resource>
 <directory>src/main/resources</directory>
 </resource>
 </resources>

 <plugins>
 <!-- correctly generate eclipse files with GWT nature -->
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-eclipse-plugin</artifactId>
 <configuration>
 <downloadSources>false</downloadSources>
 <additionalProjectnatures>
 <projectnature>com.google.gwt.eclipse.core.gwtNature</projectnature>
 <projectnature>com.google.gdt.eclipse.core.webAppNature</projectnature>
 </additionalProjectnatures>
 <additionalBuildcommands>
 <buildCommand>
 <name>com.google.gwt.eclipse.core.gwtProjectValidator</name>
 <arguments>

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

290
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

 </arguments>
 <name>com.google.gdt.eclipse.core.webAppProjectValidator</name>
 <arguments>
 </arguments>
 </buildCommand>
 </additionalBuildcommands>
 <classpathContainers>

<classpathContainer>org.eclipse.jdt.launching.JRE_CONTAINER</classpathContainer>

<classpathContainer>com.google.gwt.eclipse.core.GWT_CONTAINER</classpathContainer>
 </classpathContainers>
 <buildOutputDirectory>war/WEB-INF/classes</buildOutputDirectory>
 </configuration>
 </plugin>
 <!--
 After compiling java sources compile java to JS using GWT compiler. This
 must be done process-classes after compile step finished to be sure we
 have all the needed files in classes directory. I am using ant for this
 since the maven exec plugin is not able to run correctly this
 -->
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-antrun-plugin</artifactId>
 <executions>
 <execution>
 <id>compile-js</id>
 <phase>process-classes</phase>
 <configuration>
 <tasks>
 <property name="compile_classpath" refid="maven.compile.classpath" />
 <property name="runtime_classpath" refid="maven.runtime.classpath"/>
 <java failonerror="true" fork="true"
classname="com.google.gwt.dev.Compiler">
 <classpath>
 <pathelement location="${project.build.outputDirectory}" />
 <pathelement path="${compile_classpath}" />
 <pathelement path="${runtime_classpath}" />
 </classpath>
 <jvmarg value="-Xmx256M" />
 <jvmarg value="${gwt.arg}" />
 <!--arg value="-style" />
 <arg value="DETAILED" /-->
 <!-- to speed up compiler
 <arg value="-draftCompile" /-->
 <arg value="-war" />
 <arg value="${project.build.outputDirectory}/gwt-war" />
 <arg value="${gwt.module}" />
 </java>
 </tasks>
 </configuration>
 <goals>
 <goal>run</goal>
 </goals>
 </execution>
 </executions>
 </plugin>

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

291
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

1.
2.
3.
4.

 </plugins>
 </build>

Extending The Shell

This section is intended for developers who wants to provide new Shell commands, namespaces or Shell Features.

Table of contents:
Shell Features
Shell Commands
Shell Namespaces
Shell Documentation

Shell Features

In order to install new commands to existing namespaces or to register new namespaces, completors, injector providers or other Shell objects you
must create a new Shell Feature.
If you need to modify or add some built-in commands (this is more for Nuxeo developers) - you can directly modify the Nuxeo Shell
implementation - so you don't need to create new Shell Features.

Creating new Features is the way to do when you:

Need to declare a new namespace (even if you are modifying the main Nuxeo Shell JAR).
Cannot modify the main Nuxeo Shell JAR.
Need to patch an existing feature but cannot modify the main Nuxeo Shell JAR.
Want to provide optional features in additional JARs

What is a Feature?

A feature is a Java class that implements the interface:org.nuxeo.shell.ShellFeature

public interface ShellFeature {
 /**
 * Install the feature in the given shell instance. This is typically
 * registering new global commands, namespaces, value adapters or
 * completors.
 *
 * @param shell
 */
 public void install(Shell shell);
}

The feature has only one method: . This method will be called by the shell at startup on every registered feature toinstall(Shell shell)
register new things in the shell.

Shell Feature Registration

In order for the shell to discover your feature you need to register it. Nuxeo Shell is using the mechanism to discoverJava ServiceLoader
services.
So, to register a feature you must create a file named inside the folder of your JAR.org.nuxeo.shell.ShellFeature META-INF/services
And then write into, every ShellFeature implementation (i.e. the implementation class name) you provide.
Each class name should be specified on one line.

This is the file coming into the Nuxeo Shell JAR which declares the built-in features:org.nuxeo.shell.ShellFeature

org.nuxeo.shell.fs.FileSystem
org.nuxeo.shell.automation.AutomationFeature

Of course to enable the shell discover your features you need to put your JAR on the Java classpath used by the shell application.

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

292
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

Examples

The FileSystem Feature

Here is an excerpt from the built-in FileSystem feature that provides the namespace and file name completors.local

public class FileSystem implements ShellFeature {
 ...

 public void install(Shell shell) {
 shell.putContextObject(FileSystem.class, this);
 shell.addValueAdapter(new FileValueAdapter());
 shell.addRegistry(FileSystemCommands.INSTANCE);
 }

 ...
}

Let's look at the content of the install method.
The first line is registering the feature instance as a context object of type FileSystem.class.

The second line contribute a new Value Adapter to the shell.

The third line is registering a new namespace named and which is implemented by FileSystemCommands class.local

To activate a namespace at shell startup you can use:

 shell.setActiveRegistry("myNamespaceName");

in your method but this is too intrusive since it may override some other namespace that also want to be the default one.install

Contributing a Command to the Global Namespace

In this example we will see how to contribute a command to an existing namespace - in our example it will be the namespace.global

Context Objects
are object instances that are available for injection into any command field using the @Context annotation.

Value Adapters
are objects used to adapt an input type to an output type. They are used to adapt string values specified on the command line to a
value of the real type specified by the command field which was bound to a command line parameter.

Command Registry
A command registry object is the materialization of a namespace. It must extend the abstract class org.nuxeo.shell.CommandRegi
stry

To activate a namespace at shell startup set the Java system property to point to your namespace name when starting the shellshell
application. Example:

java -Dshell=myNamespace -jar nuxeo-shell.jar

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

293
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

public class MyFeature implements ShellFeature {
 ...

 public void install(Shell shell) {
 GlobalCommands.INSTANCE.addAnnotatedCommand(MyCommand.class);
 }

 ...
}

You can see this feature is really simple. It is registering in the GlobalCommands registry a new command created from a Command annotated
class.
If the registry you want to access is not providing a static INSTANCE field you can use the shell to lookup a registry by its name.
So you can also do the following:

 shell.getRegistry("global").addAnnotatedCommand(MyCommand.class);

Registering a Namespace at demand (when a command is executed)

This use case is useful in features using connection like commands.
When such a feature is installed - it will register only the like command in the global namespace. But when command isconnect connect
executed the feature will execute the command namespace since a connection was established and remote commands can be used.remote

public class MyRemoteFeature implements ShellFeature {
 ...

 public void install(Shell shell) {
 GlobalCommands.INSTANCE.addAnnotatedCommand(MyConnectCommand.class);
 }

 public CommandRegistry createRemoteRegistry() {
 CommandRegistry reg = new CommandRegistry();
 // add commands to registry here
 return reg;
 }

 ...
}

You can see the feature is simply installing the like command into the global namespace.connect
Also, it is providing a factory method for the remote registry which should be registered only when connected to server.

Now let's look at the implementation:MyConnectCommand

This is how Automation Feature is implemented.

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

294
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

1.
2.
3.

4.
5.

@Command(name = "connect", help = "Connect to a remote server")
public class MyConnectCommand implements Runnable {

 @Context
 protected Shell shell;

 @Argument(name = "url", index = 0, required = false, help = "The url of the
automation server")
 protected String url;

 @Parameter(name = "-u", hasValue = true, help = "The username")
 protected String username;

 @Parameter(name = "-p", hasValue = true, help = "The password")
 protected String password;

 public void run() {
 try {
 doConnect(url, username, password);
 CommandRegistry reg =
shell.getFeature(MyRemoteFeature.class).createRemoteRegistry();
 shell.addRegistry(reg);
 shell.setActiveRegistry(reg.getName());
 } catch (Exception e) {
 throw new ShellException("Failed to connect to "+url, e);
 }
 }

}

You can see here that after successfully connecting to the remote server we ask our feature instance to create our remote command registry, and
then we simply register it in the shell.
Then we activate this registry so that the active namespace in the interactive shell will be the one.remote

In the same manner we can implement the disconnect method - after disconnecting it will unregister the remote namespace and switch on the loc
 namespace.al

Shell Commands

Let's look now into Command implementation details.

Creating A Command

When creating a command you should think about:

What my command is doing - choose a name, write a short description and define the command parameters.
Map the command parameters on object fields.
Specify any completors you want for the parameter values. If you need a new completor, write it and register it through the feature
contributing your command.
implement the command logic.
register your command in a namespace.

I will demonstrate this on creating a command that is listing the children of remote document with an optional filter on th child document type.

Define the command syntax

My command is listing children given a type so I will name it . So it will take as parameters an option which is the type to filter on, and anlst
optional argument which is the target document to list its children. If no type is given all children will be listed.
The document argument is optional because if not specified the current document will be used as the target document.

Any command should implement the interface - since the method will be invoked by the shell to execute thejava.lang.Runnable run
command.

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

295
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

@Command(name = "lst", help = "List children documents filtered by type")
public class Lst implements Runnable {
 public void run() {
 }
}

So, I've put a name on my command and a short description which will be used to generate the documentation.
You can also specify alias names for your command by filling the attribute of the @Command annotation.aliases
Example aliases = "listByType"

Let's go to the next step.

Map the command parameters on object fields

Now I need to map the command line arguments to fields on my Command object.

@Command(name = "lst", help = "List children documents filtered by type")
public class Lst implements Runnable {

 @Argument(name = "doc", index = 0, required = false, help = "A document to list
its content. If not specified list the current document content.")
 protected DocRef doc;

 @Parameter(name = "-type", hasValue = true, help = "The type to filter on
children. If not specified all children will be listed.")
 protected boolean uid = false;

 public void run() {
 }
}

So I mapped the target document on my field, and the -type option on my field.doc type
So when I will run my command these fields will be injected with the user options specified through the command line.

But how the document target which is specified as a path will become a object? This is because the Automation Feature is providing anDocRef
Object Adapter from String to DocRef. It will convert a document path into a Java DocRef object which will be used by the automation client to
reference a remote document.

Also, the field is not require since if it is not specified I will use the current document as the target of my command.doc

You can see that the option specify that waits for a value (the attribute). If this attribute is not specified the option will be assumed-type hasValue
to be a flag (i.e. boolean value that activate a behavior when used).

Let's look at the next step.

Add completors if any

Now I want to add completors for my parameter values. Automation Feature is already providing a completor for documents. I will create a
completor for possible children types.
Here is the type completor:

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

296
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

public class SimpleDocTypeCompletor extends SimpleCompletor {
 public DocTypeCompletor() {
 super(new String[] { "Workspace", "Section", "Folder",
 "File", "Note" });
 }
}

The is a helper provided by JLine to create simple completors. To create complex completors you may want to directlySimpleCompletor
implement the JLine interface.Completor

My completor only allows a few types to filter on: Workspace, Section, Folder, File and Note. To create a more useful completor we will want to
make a query to the server for the available types in the repository.

Let's now specify my completor for the option and the provided by the Automation Filter for my argument.-type DocRefCompletor doc

@Command(name = "lst", help = "List children documents filtered by type")
public class Lst implements Runnable {

 @Argument(name = "doc", index = 0, required = false,
completor=DocRefCompletor.class, help = "A document to list its content. If not
specified list the current document content.")
 protected DocRef doc;

 @Parameter(name = "-type", hasValue = true,
completor=SimpleDocTypeCompletor.class, help = "The type to filter on children. If not
specified all children will be listed.")
 protected boolean uid = false;

 public void run() {
 }
}

Let's go to next step now.

Implement command logic

Now I want implement the command logic - the method.run
But first, I need explain some things made available by the Automation Feature.

The Automation Feature is keeping an object which reflects the state of our remote session. It provides remote API and holdRemoteContext
things such as the current document in the shell. This object is made available for injection because it was registered by the Automation Feature
as a . So let's inject that object:Context Object

@Command(name = "lst", help = "List children documents filtered by type")
public class Lst implements Runnable {
 @Context
 protected RemoteContext ctx;

 ...
 public void run() {
 }
}

Now in the method we can use the object to access to the server and to the remote context of the shell.run ctx

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

297
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

Now we are ready to implement the method. I will omit the fields declaration to have a more readable code:run

 public void run() {
 if (doc == null) {
 // get the current document if target doc was not specified.
 doc = ctx.getDocument();
 }
 ShellConsole console = ctx.getShell().getConsole();
 try {
 if (type == null) {
 for (Document child : ctx.getDocumentService().getChildren(doc)) {
 DocumentHelper.printName(console, child);
 }
 } else {
 for (Document doc : ctx.getDocumentService().getChildren(doc)) {
 if (type.equals(child.getType())) {
 DocumentHelper.printName(console, child);
 }
 }
 }
 } catch (Exception e) {
 throw new ShellException("Failed to list document " + path, e);
 }
 }

You can see that the Shell instance is retrieved from the context, but you can inject it as you injected the context or use constructShell.get()
to lookup the Shell instance.

The is a class that provide a helper method to extract the name of a document from its path and print it on the console.DocumentHelper

You can just use if you want to print the full path of children.console.println(doc.getPath());

The is returning a helper service instance to deal with remote automation calls. If you want more control on whatctx.getDocumentService()
you are doing use and then use the low level API of Automation Client.ctx.getSession()

Register the command in a namespace

Now, our command is ready to run. We need just to register it before. For this either we are directly the namespace and add it - but forremote
many of us this is not possible since you need to modify the Nuxeo Shell JAR. In that case we will create a new feature like explained in Shell

.Features

public class MyFeature implements ShellFeature {
 public void install(Shell shell) {
 shell.getRegistry("remote").addAnnotatedCommand(Lst.class);
 }
}

Don't Like Injection?
If you don't like injection you can always lookup yourself the context objects through the shell instance.
The construct is equivalent to@Context protected RemoteContext ctx;

protected RemoteContext ctx = Shell.get().getContextObject(RemoteContext.class)

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

298
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

And then register the feature as explained in . Build your JAR and put it on the shell application classpath.Shell Features
Now you are ready to use your own command.

Exception handling

We've seen in the previous example that the run method is wrapping all exception and re-throw them as which is a runtimeShellException
exception. This is the pattern to use to have the shell correctly handling exceptions. If you are not catching an exception it will end-up in the
console printed in a red color. If you are sending a ShellException only the exception message is printed as an error and you can see the
complete stack trace of the last exception using the command. This is true in interactive mode. In batch mode exception are printed astrace
usual.

The command class

Here is our final class:

@Command(name = "lst", help = "List children documents filtered by type")
public class Lst implements Runnable {

 @Context
 protected RemoteContext ctx;

 @Argument(name = "doc", index = 0, required = false,
completor=DocRefCompletor.class, help = "A document to list its content. If not
specified list the current document content.")
 protected DocRef doc;

 @Parameter(name = "-type", hasValue = true,
completor=SimpleDocTypeCompletor.class, help = "The type to filter on children. If not
specified all children will be listed.")
 protected boolean uid = false;

 public void run() {
 if (doc == null) {
 // get the current document if target doc was not specified.
 doc = ctx.getDocument();
 }
 ShellConsole console = ctx.getShell().getConsole();
 try {
 if (type == null) {
 for (Document child : ctx.getDocumentService().getChildren(doc)) {
 DocumentHelper.printName(console, child);
 }
 } else {
 for (Document doc : ctx.getDocumentService().getChildren(doc)) {
 if (type.equals(child.getType())) {
 DocumentHelper.printName(console, child);
 }
 }
 }
 } catch (Exception e) {
 throw new ShellException("Failed to list document " + path, e);
 }
 }
}

The DocRef adapter is also supporting UID references not only paths .. to specify an UID you should prepend the "doc:" string to the
UID.

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

299
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

1.
2.

Scripting Commands

As we've seen, remote commands are using the automation client API to talk with the server. This means our remote commands are in fact
wrappers around a core automation object: an automation operation. A remote command is in fact translating the user input in a server side
operation and is using the automation client API to invoke that operation. All these things are hidden in Nuxeo Shell but you can always use the
automation client API and directly invoke operations if you want.

This is a nice feature since automation is used also on the server side to design high level actions on the Nuxeo platform. So we reuse the code
existing in Nuxeo without having to deal with Nuxeo low level API. You can, this way, even assemble administration commands using Nuxeo

 and invoke them from the shell.Studio

But, the problem is that using operations means to have this operation defined on server side. It may happens that Nuxeo is not always providing
an operation dedicated for your needs. In this case an approach is to implement a operation (server side), deploy it on the server and then create
a shell command to invoke the operation. But you cannot do this anytime you need a new command in the shell and your target server is a
production server. Also there are use cases not covered by operations like listing the existing ALCs on a document (in fact all listings that doesn't
involves returning from the server documents or blobs).

To solve this issue we implemented a script operation. A script operation is a server side operation that takes as input a blob (i.e. a file) containing
a script (in Groovy or Mvel) and execute this script on the server in the current shell context.
Using this feature you can do anything you want not covered by operations. You can do things like from how long the server is running? or to
perform garbage collection or getting monitoring information o Nuxeo Services etc.

There are two way to use scripting in the shell:

Use the command that takes as input the script file to execute and a context execution map of parameters.script
Creating a command that wraps a script and provides typed parameters - completion aware.

The first solution is OK, when you are creating Ad-Hoc scripts - like invoking GC on the server. But if you want well types commands with
completors etc. then you need to implement a real command that will invoke your script.

So, we will focus now on the second option.

Invoking scripts from a command

To do this, you need first to write the script - let's say a Groovy script. This script should return a string - the result of the operation. Put this script
somewhere in the JAR - let's say in "scripts/myscript.groovy" in your JAR root.

Then in your shell command you can invoke this script to be executed remotely with the arguments specified by the user on the command line by
invoking:

String result = Scripting.run("scripts/myscript.groovy", ctx);

where is a String to String map containing the user options to be forwarded to the script.ctx
The script can access these options using expression where is a name of a user variable passed in the map.Context["key"] key ctx

As a real example you can see the command of the shell and the script it is invoking.Perms printAcl.groovy

Of course the output of the script (a string) may be a complex object - encoded as JSON or XML - in that case your command should be able to
decode it and print a human readable response on the terminal.

Here is a complete example of a script used by the command to get the ACLs available on a document:perms

Security Warning
Because of potential security issues the scripting feature is available only when logged in as Administrator

http://doc.nuxeo.com/x/GATF
https://doc.nuxeo.com/display/Studio/Nuxeo+Online+Services
https://doc.nuxeo.com/display/Studio/Nuxeo+Online+Services

 Nuxeo Enterprise Platform 5.4 Documentation

300
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

import org.nuxeo.ecm.core.api.PathRef;
import org.nuxeo.ecm.core.api.IdRef;
import org.nuxeo.ecm.core.api.security.ACP;
import org.nuxeo.ecm.core.api.security.ACE;
import org.nuxeo.ecm.core.api.security.ACL;

def doc = null;
def aclname = Context["acl"];
def ref = Context["ref"];
if (ref.startsWith("/")) {
 doc = Session.getDocument(new PathRef(ref));
} else {
 doc = Session.getDocument(new IdRef(ref));
}
def acp = doc.getACP();
def result = null;
if (aclname != null) {
 def acl = acp.getACL(aclname);
 if (acl == null) {
 result = "No Such ACL: ${aclname}. Available ACLS: ";
 for (a in acp.getACLs()) {
 result+=a.getName()+" ";
 }
 return result;
 }
 result = "{bold}${aclname}{bold}\n";
 for (ace in acl) {
 result += "\t${ace}\n";
 }
} else {
 result = "";
 for (acl in acp.getACLs()) {
 result += "{bold}${acl.name}{bold}\n";
 for (ace in acl) {
 result += "\t${ace}\n";
 }
 }
}

return result;

Shell Namespaces

We are getting now to the end of our breakthrough about extending the shell.

We've already seen how to add new Shell Features and how to implement new commands. This last chapter is talking a bit about Shell
Namespaces.

The Shell Prompt

As we've already seen, namespaces are in fact hierarchical registries of commands. When entering a namespace all other namespaces not
extended by the current namespace are hidden for the shell user. But there is still a point we have not yet discussed yet - the fact that a
namespace may change the shell prompt when it is activated. This is important because it is a visual feedback for the user that it switched to
another context.

To explain how a namespace is changing the shell prompt I will give the example of the namespace provided by the feature.local FileSystem

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

301
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

It's really easy: the FileSystem feature is registering and activating the namespace which is implemented by a subclass of local CommandRegsit
. The is providing a method that any subclass may override: .ry CommandRegistry String getPrompt(Shell shell)

So when creating a new namespace (i.e. CommandRegistry) you can override this method to return the prompt for your namespace.
Here is the implementation of of the FileSystemCommands class (which is the materialization of the namespString getPrompt(Shell shell) local
ace):

 public String getPrompt(Shell shell) {
 return System.getProperty("user.name") + ":"
 + shell.getContextObject(FileSystem.class).pwd().getName()
 + "$ ";
 }

So we can see that the prompt is dynamically updated after each command execution to reflect the new context. In this case we print the local
username and the name of the current directory.

The Default Namespace

The shell will activate by default the namespace if any with that name exists, otherwise it is activating the namespace if any suchremote local
namespace exists, otherwise the namespace is activated.global

To force a namespace to be activated when the shell starts you can use the Java System Property when launching the shell application. Forshell
example, the following will activate the namespace when the shell starts:equinox

java -Dshell=equinox -jar nuxeo-shell.jar

Of course, you should provide an "equinox" namespace to have this working - otherwise the default shell namespace will be used.

Executing initialization code at startup

If your namespace need to execute some code when the shell is launched and your namespace is activated (because you set it as the default
one) then you should override the method and provide your logic there. You can use this toCommandRegistry.autorun(Shell shell)
automatically connect to a remote host if the connection details were specified on the command line when starting the shell. See the
AutomationFeature "remote" namespace - this is the way it is automatically connecting when you specify the connection details on the shell
command line.

Shell Documentation

As we've discussed in the Overview section, commands are self documented by using annotations.
These annotations are used to generate the base of the command documentation, like: short description, syntax, options, arguments etc.
using this information the shell automatically generate basic help for you.

This is the minimal documentation provided by any command and it may be enough for simple commands. But for more complex commands you
may want to give more in depth instructions or examples.
To do this you can create a text file that has the same name as the short name of the command class plus the extension. This file must.help
reside in the JAR in the same package as the command class.

The help file is an ASCII text file which may contain some special tags to control the help rendering in both terminal or wiki mode.
The most important tags are:

{header} - can be used to use a bold font for a title. Working in both terminal and wiki.
Usage:

The generated documentation is available in both text format (for terminal) and wiki format. See for the wikiShell Command Index
format.

Technical Detail
The file class is located at runtime using the command class getResource method and the naming pattern specified above.help

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

302
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

1.

2.

{header}EXAMPLES{header}
Here is an example of ...

{bold} - same as .{header}
{code} - can be used to escape code - working in wiki, ignored (tag is removed) in terminal.only

Also, you can use any confluence {tag}. It will be correctly displayed in the wiki and ignored in the terminal.
There is also a set of tags that are working only in terminal:

underscore
blink
reverse
concealed

Color tags:

black
red
green
yellow
blue
magenta
cyan
white

Background tags:

bg.black
bg.red
bg.green
bg.yellow
bg.blue
bg.magenta
bg.cyan
bg.white

In addition you can also use any numeric control code as the tag name. See JLine documentation for more details on the terminal codes.

 Anyway it is to only use , and other wiki tags like since terminal tags are not translated in wiki tags.recommended header bold code

Here are instructions on how to synchronize the wiki page with the modifications in Nuxeo Shell:

Export in wiki format the namespace you modified:

java -jar nuxeo-shell.jar -e "connect -u Administrator -p Administrator
http://localhost:8080/nuxeo/site/automation; help -export tofile.wiki -ns remote"

The connect command is needed if you want to export the namespace. For local namespaces you doesn't need to connect to aremote
server.
Copy/Paste the content of the exported wiki file to the Wiki Page under corresponding to the updated namespace.Shell Command Index

WebEngine (JAX-RS)

Nuxeo WebEngine is a web framework for applications based on a Nuxeo document repository. It provides a template mechanism toJAX-RS
facilitate the dynamic generation of web views for JAX-RS resources.

Templating is based on the template engine.Freemarker

WebEngine also provides support for writing JAX-RS resources using the Groovy language, or other scripting languages supported by the javax
 infrastructure..scripting

Important
When contributing new commands in the Nuxeo Shell core library (or modifying old ones) please make sure you update the wiki at Shell

.Command Index

http://doc.nuxeo.com/x/GATF
http://jcp.org/en/jsr/detail?id=311
http://freemarker.sourceforge.net/

 Nuxeo Enterprise Platform 5.4 Documentation

303
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

Besides templating support, WebEngine provides an easy way to integrate native JAX-RS application on top of the Nuxeo platform - it provides all
the glue and logic to deploy JAX-RS application on a Nuxeo server.

We will describe here the steps required to register a JAX-RS application, and how to use WebEngine templating to provide Web views for your
resources.

This tutorial assumes you are already familiarized with JAX-RS. If not, please read first a JAX-RS tutorial or the specifications. For beginners, you
can find a here.JAX-RS tutorial

Outline of this chapter:
Quick checklist
Declaring a JAX-RS Application in Nuxeo

Example
Automatic discovery of JAX-RS resources at runtime

Declaring a WebEngine Application in Nuxeo
Upgrading your old-style WebEngine module to work on 5.4.2
Example

What is WebEngine good for?
JAX-RS Resource Templating

Example
WebEngine Template Variables
Custom Template Variables

WebEngine Modules
WebEngine Objects
WebEngine Adapters
@Path and HTTP method annotations.
Dispatching requests to WebObject sub-resources.
Module deployment
Module structure
Web Object Views
Extending Web Objects
Extending Modules
Template Model
Static resources
Headless modules
Groovy Modules

Building WebEngine projects

Quick checklist

These are the key points to keep in mind to have a running simple WebEngine application. They will be detailed further in this page.

make your class extend ,ModuleRoot
annotate your class with ,@WebObject
define a referencing the type in the above annotation,module.xml
have in the pom.xml (and use to run it).maven-apt-plugin mvn install

Declaring a JAX-RS Application in Nuxeo

To deploy your JAX-RS application in Nuxeo you should create a JAX-RS application class (see specifications) and declare it inside the MANIFES
 file of your Nuxeo bundle.T.MF

To define a JAX-RS application, you must write a Java (or Groovy) class that extends the abstract class.javax.ws.rs.core.Application

Then, you need to declare your application in your bundle file as following:MANIFEST.MF

Nuxeo-WebModule: org.MyApplicationClass

where is the full name of your JAX-RS application class.org.MyApplicationClass

Now you simply put your JAR in Nuxeo bundles directory (e.g. under JBoss) and your Web Application will be deployednuxeo.ear/system
under the URL: .http://localhost:8080/nuxeo/site

Example

This page presents the WebEngine concepts. For more details about using these concepts, see the . You canWebEngine Tutorials
download the tutorials sources from examples.zip

http://doc.nuxeo.com/x/GATF
https://cwiki.apache.org/CXF20DOC/jax-rs.html#JAX-RS-Understandingthebasics
http://localhost:8080/nuxeo/site
https://doc.nuxeo.com/download/attachments/3343141/examples.zip?version=1&modificationDate=1279707196327

 Nuxeo Enterprise Platform 5.4 Documentation

304
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

Let's define a JAX-RS application as follows:

public class MyWebApp extends Application {
 @Override
 public Set<Class<?>> getClasses() {
 HashSet<Class<?>> result = new HashSet<Class<?>>();
 result.add(MyWebAppRoot.class);
 return result;
 }
}

where the class is the entry point of the application and is implemented as follows:MyWebAppRoot

@Path("mysite")
public class MyWebAppRoot {
 @GET
 public Object doGet() {
 return "Hello World!";
 }
}

Lets say the full name of is . Now you should tell to Nuxeo WebEngine that you have a JAX-RSMyWebApp org.nuxeo.example.MyWebApp
application n your bundle. To do this, add a line to your file as follows:MANIFEST.MF

Manifest-Version: 1.0
...
Nuxeo-WebModule: org.nuxeo.example.MyWebApp
...

Build your application JAR and put it into your Nuxeo bundles directory. After starting the server you will have a new web page available at http://l
.ocalhost:8080/nuxeo/site/mysite

Automatic discovery of JAX-RS resources at runtime

If you don't want to explicitly declares your resources in a JAX-RS application object you can use a special application that will discover resources
at runtime when it will be registered by the JAX-RS container.
For this you should use the application in your manifest like this:org.nuxeo.ecm.webengine.jaxrs.scan.DynamicApplicationFactory

Nuxeo-WebModule: org.nuxeo.ecm.webengine.jaxrs.scan.DynamicApplicationFactory

When your JAX-RS module will be registered the bundle declaring the module will be scanned and any class annotated with or @Provider @Pat
 will be added to the module.h

If you want to avoid scanning the entire bundle you can use the attribute to perform scanning only inside the given package (and on itspackage
sub-packages). Example:

Under the Jetty core server distribution (which is a development distribution), the URL of your application will be http://localhost:8080/m
ysite

http://doc.nuxeo.com/x/GATF
http://localhost:8080/nuxeo/site/mysite
http://localhost:8080/nuxeo/site/mysite
http://localhost:8080/mysite
http://localhost:8080/mysite

 Nuxeo Enterprise Platform 5.4 Documentation

305
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

Nuxeo-WebModule:
org.nuxeo.ecm.webengine.jaxrs.scan.DynamicApplicationFactory;package=org/my/root/packa
ge

Declaring a WebEngine Application in Nuxeo

To declare a WebEngine Application you should create a new JAX-RS Application as in the previous section - but using the org.nuxeo.ecm.we
 base class and declare any Web Object Types used inside your application (or use runtime type discovery).bengine.app.WebEngineModule

You will learn more about Web Object Types in the following sections.

If you'd like your WEB module to be deployed in a distinct JAX-RS application than the default one (handling all webengine modules), you need to
decare a host:

Nuxeo-WebModule: org.nuxeo.ecm.webengine.app.WebEngineModule;host=MyHost

and bind the servlet to this host in the deployment-fragment.xml file:

The JAX-RS container used by Nuxeo is .Jersey

The simplest way to declare a WebEngine module is to add a line like the following one in your manifest:

Nuxeo-WebModule:
org.nuxeo.ecm.webengine.app.WebEngineModule;name=myWebApp[;extends=base;package=
org/mywebapp]

the attribute is mandatory, and are optional and are explained above.name extends package
When declaring in that way a WebEngine module all the Web engine types and JAX-RS resources will be discovered at runtime - at
each startup.

A WebEngine Application is a regular JAX-RS application plus an object model to help creating Nuxeo web front ends using
Freemarker as the templating system.

Compatibility Note
This way of declaring WebEngine Applications is new - used since Nuxeo 5.4.1 versions. The old declaration mode through module.x

 (and web types discovery at build time) is still supported but it is deprecated. See WebEngine Modules for more details.ml

http://doc.nuxeo.com/x/GATF
https://jersey.dev.java.net/

 Nuxeo Enterprise Platform 5.4 Documentation

306
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

<extension target="web#SERVLET">
 <servlet>
 <servlet-name>My Application Servlet</servlet-name>
 <servlet-class>
 org.nuxeo.ecm.webengine.app.jersey.WebEngineServlet
 </servlet-class>
 <init-param>
 <param-name>application.name</param-name>
 <param-value>MyHost</param-value>
 </init-param>
 </servlet>
 <servlet-mapping>
 <servlet-name>My Application Servlet</servlet-name>
 <url-pattern>/site/myapp/*</url-pattern>
 </servlet-mapping>
</extension>

This will isolate your top level resources from the ones declared by other modules (like root resources, message body writer and readers,
exception mapper etc.
Example: this will make it possible, for instance, to use a distinct exception mapper in your application.

Upgrading your old-style WebEngine module to work on 5.4.2

Before 5.4.2 you were able to declare a WebEngine module only by using a module.xml file. If you have such a module and want to upgrade it to
run under >= 5.4.2 versions you should:

Add the following header in the MANIFEST.MF file of your plugin:

Nuxeo-WebModule: org.nuxeo.ecm.webengine.app.WebEngineModule

Update your root object (the one referenced in module.xml as root-type="...") and add a @Path annotation on the class that specify the
module path (as specified in module.xml as path="...")

This is the easiest way to upgrade an existing module - but it is only a compatibility mode introduced to ease the upgrade.

If you want to use the new features provided by the new way of declaring WebEngine modules you should refactor your module and define a
JAX-RS application as described in the example below.
The benefit of this approach is that you can have any number of root objects in the same WebEngine module, and also you don't need to
reference them in module.xml (i.e. module attributes are no more needed if you take this approach).
This provides a standard way of declaring your JAX-RS root resources - and also add strong typing for your JAX-RS root resources.

Example

To define a WebEngine Application you should override the class and declare any weborg.nuxeo.ecm.webengine.app.WebEngineModule
types you are providing:

public class AdminApp extends WebEngineModule {

 @Override
 public Class<?>[] getWebTypes() {
 return new Class<?>[] { Main.class, User.class, Group.class,
 UserService.class, EngineService.class, Shell.class };
 }

}

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

307
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

Of course as for JAX-RS applications you should specify a Manifest header to declare your application like:

Nuxeo-WebModule: org.nuxeo.ecm.webengine.admin.AdminApp;name=admin;extends=base

You can see there are some additional attributes in the manifets header: 'name' for the module name and 'extends' if you want to extend another
module. The 'name' attribute is mandatory. You can also optionally use the 'headless=true' attribute to avoid displaying your module in the module
list on the root index.

If you want to customize how your module is listed in that module index you can define 'shortcuts' in the module.xml file. Like this:

<?xml version="1.0"?>
<module>
 <shortcuts>
 <shortcut href="/admin">
 <title>Administration</title>
 </shortcut>
 <shortcut href="/shell">
 <title>Shell</title>
 </shortcut>
 </shortcuts>
</module>

To define a WebEngine Application root resource you should override the
 class:org.nuxeo.ecm.webengine.model.impl.ModuleRoot

@WebObject(type = "Admin", administrator = Access.GRANT)
@Produces("text/html;charset=UTF-8")
@Path("/admin")
public class Main extends ModuleRoot {

 public Main(@Context UriInfo info, @Context HttpHeaders headers) {
 super(info, headers, "Admin");
 }

 ...

}

What is WebEngine good for?

We've seen that using WebEngine you can deploy your JAX-RS applications without many trouble. You don't need to care about servlet
declaration etc. You simply need to declare your JAX-RS application class in the MANIFEST file. The JAX-RS servlet provided by WebEngine will
be used to invoke your application when its URL is hit.

So for now, we've seen how to create a JAX-RS application and deploy it into a Nuxeo server. You can stop here if you just want to use JAX-RS
and don't care about WebEngine templating and Web Views for your resources.

JAX-RS is a very good solution to build REST applications and even Web Sites. The problem is that JAX-RS focus more on REST applications
and doesn't define a flexible way to build modular Web Sites on top of the JAX-RS resources.

If you want automatic discovery of resources you can just use the WebEngineModule in your MANIFEST.MF - without extending it with
your own application class.

Note that the module.xml file is optional. You can use it if you want to make some customization like adding shortcuts or defining links.

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

308
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

This is where is helping by providing Web Views for your JAX-RS resources.WebEngine

I will first explain how you can do templating (using Freemarker) for a regular JAX-RS resource. Then I will enter deeper into the WebEngine
templating model.

JAX-RS Resource Templating

To create a Freemarker template for your JAX-RS resource you need to put the template file (a Freemarker template like) in yourindex.ftl
bundle so the template could be located using the Java class loader at runtime.

Example

Put a file with the following content in the :src/main/resources/org/nuxeo/example/index.ftl

Hello ${Context.principal.name}!

And then modify the class as following:MyWebAppRoot

public class MyWebAppRoot {
 @GET
 public Object doGet() {
 return new TemplateView(this, "index.ftl");
 }
}

If your are logged as Guest and you go to you will see a message like: http://localhost:8080/nuxeo/site/mysite Hello Guest!

WebEngine Template Variables

Here is the list of all variables available in a template file:

Context - the context object; see for the provided API.org.nuxeo.ecm.webengine.model.WebContext
This - the target JAX-RS resource. (the object that returned the template)
Root - the first JAX-RS resource in the call chain. (the first JAX-RS resources that delegate the call to the leaf resource). This variable is

 for pure JAX-RS resources. You should use WebEngine objects to have it defined.not available
Session - the Nuxeo repository session. The session is always non null when the JAX-RS application is installed into a Nuxeo server.
Document - this object is equivalent to when the current JAX-RS resource is wrapping a Nuxeo Document. See This org.nuxeo.ecm.

 for the provided API. This variable is not set when using pure JAX-RSplatform.rendering.fm.adapters.DocumentTemplate
resources. You should use WebEngine objects to have it defined.
Adapter - the current WebEngine adapter - only set when using WebEngine objects and the current JAX-RS resource is an adapter.
Module - - this is the module instance (the root object) and is provided only for compatibility with previous WebEnginedeprecated
implementations.
Engine - this is the singleton WebEngine service; see the interface for the provided API.org.nuxeo.ecm.webengine.WebEngine
basePath - the (see specifications)contextPath+"/"+servletPath javax.servlet
contextPath - - special variable that identify the context path set using the runtime variable deprecated org.nuxeo.ecm.contextPa

. Tis is useful for proxy redirections. See section for how to locate resources.th WebEngine Resources
skinPath - - represent the path to the WebEngine module resources. Should no more be used since it is not safe whendeprecated
rewriting requests using a proxy HTTP server. See section for how to locate resources.WebEngine Resources

You notice that when using pure JAX-RS objects you only have the following built-in variables defined in the template context: , , This Context E
, , .ngine basePath contextPath

Custom Template Variables

You can add your custom variables to the template context as follows:

In WebEngine if you doesn't sign in as a real user you will be automatically considered a user.Guest

http://doc.nuxeo.com/x/GATF
http://localhost:8080/nuxeo/site/mysite

 Nuxeo Enterprise Platform 5.4 Documentation

309
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

public class MyWebAppRoot {
 @GET
 public Object doGet() {
 return new TemplateView(this, "index.ftl").arg("country",
"France").arg("city", "Paris");
 }
}

You can now write a template file named that uses these variables to render the response:index.ftl

Hello ${Context.principal.name}! Your country is ${country}, and your city is ${city}.

WebEngine Modules

The problem with the templating described above is that template files are inside the application JAR and are located using the class loader. This
make difficult to create web sites that are composed from tens of template files and images. A more flexible approach will be to put web files into
directories on the file system. This way, the lookup is faster and you can easily modify web files without restarting the server when in development
mode.

This is one of the reason the WebEngine module concept was introduced.

A module is a bundle (i.e. JAR file) that contains JAX-RS resources and web resources (such as images, HTML files or templates). The module is
usually defining a JAX-RS application but it can also contribute resources to other applications. So a module is defined by:

a module name - a unique key used to identify the module in the module registry.
a module path - the path of the root resource in a module.
a module entry point - a JAX-RS resource class that will be served when the module path matches a client request. The module entry
point is used to directly send responses or to dispatch the request to other JAX-RS resources.

To define a module you need to create a file and put it in the root of your JAR. Here is the minimal content of a file:module.xml module.xml

<module name="Admin" root-type="Admin" path="/admin" />

This module file is declaring a module named with path . The module path is relative to the WebEngine servlet so the full URL ofAdmin /admin
this module will be .http://localhost:8080/nuxeo/site/admin

You notice there is a third required attribute . This attribute is used to locate the module entry point.root-type

How the entry point is located will be discussed in the next section.

WebEngine Objects

A WebEngine module is made from web resources and web objects. Resources are usually HTML, JavaScript, CSS, images or template files and
are used to create web for the JAX-RS objects provided by the module.views

To be able to bind views to your JAX-RS resources you must declare them as WebEngine objects. This is done by using the annotation: @WebOb
 and extending the class. Example:ject org.nuxeo.ecm.webengine.model.impl.DefaultObject

The module declaration documented here is deprecated for Java based modules since Nuxeo 5.4.1 versions. See Declaring a
WebEngine Application in Nuxeo for the new declaration. The file is now optional - and should be used to declare modulemodule.xml
shortcuts or to describe links. Groovy based modules still use the old declaration method.

http://doc.nuxeo.com/x/GATF
http://localhost:8080/nuxeo/site/admin

 Nuxeo Enterprise Platform 5.4 Documentation

310
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

@WebObject(type = "User")
@Produces("text/html;charset=UTF-8")
public class User extends DefaultObject {

 @GET
 public Object doGet() {
 return getView("index").arg("user", principal);
 }

 ...

In the previous example we defined a WebObject of type . You notice the object is a JAX-RS resource and extends the baUser DefaultObject
se class. The annotation is used to declare the JAX-RS resource as a WebObject.@WebObject

There is a special WebObject - the entry point of a module. To define a module entry point you need to create a WebObject that extends the org.
 class. Example:nuxeo.ecm.webengine.model.impl.ModuleRoot.ModuleRoot

@WebObject(type = "Admin", administrator=Access.GRANT)
@Produces("text/html;charset=UTF-8")
public class Main extends ModuleRoot {

 @Path("users")
 public Object getUserManagement() {
 return newObject("UserManager");
 }

 @Path("engine")
 public Object getEngine() {
 return newObject("Engine");
 }

 ...
}

As we've seen above when a module is loaded the entry point class is located using the attribute in module.xml. This attribute isroot-type
pointing to the WebObject having the same type as the value. So in our case the attribute is telling toroot_type root-type="Admin"
WebEngine to use the the class annotated with as the entry point JAX-RS resource.Main @WebObject(type = "Admin")

In the example above we can see that WebObjects methods annotated with , etc. are used to return the response to the client. The@GET @POST
right method is selected depending on the HTTP method that were used to make the request. methods are used to serve GET requests, @GET @P

 methods are used to serve POST requests, etc. So the method:OST

 @GET
 public Object doGet() {
 return getView("index").arg("user", principal);
 }

will return a view (i.e. template) named "index" for the current object. The returned view will be processed and serialized as a HTML document
and sent to the client.

We will see in next section how view templates are located on the file system.

The method:

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

311
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

 @Path("users")
 public Object getUserManagement() {
 return newObject("UserManager");
 }

delegates the request to the WebObject having the type . This Web Object is a JAX-RS resource annotated with UserManager @WebObject(ty
.pe="UserManager")

WebEngine Adapters

A WebAdapter is a special kind of Web Object that can be used to extend other Web Objects with new functionalities. To extend existing objects
using adapters you don’t need to modify the extended object. This type of resource make the life easier when you need to add more API on an
existing object but cannot modify it because for example it may be a third party web object or the new API is too specialized to be put directly on
the object. In this cases you can create web adapters that adapts the target object to a new API.

To declare an adapter use the annotation and extend the class:@WebAdapter DefaultAdapter

@WebAdapter(name = "audits", type = "AuditService", targetType = "Document")
public class AuditService extends DefaultAdapter {
...
}

An adapter has a that will be used to select the adapter depending on the request path, and as any Web Object a type. An adapter also hasname
a that represent the type name of the object to adapt.targetType

See more on using adapters in Adapter Tutorial.

@Path and HTTP method annotations.

Lets discuss now how JAX-RS annotations are used to match requests.

If a method is annotated using one of the HTTP method annotations (i.e. , , , , etc.) then it will be invoked when the@GET @POST @PUT @DELETE
current object path matches the actual path in the user request. These methods return the object that will be used as the response to bemust
sent to the client. Regular Java objects as String, Integer etc. are automatically serialized by the JAX-RS engine and sent to the client. If you
return other type of objects you must provide a writer that will handle the object serialization. See more about this in JAX-RS specifications.

Methods that are annotated with both and one of the HTTP method annotations are uses tin the same manner as the ones without a @Path @Pat
 annotation. The annotation can be added if you want to match a sub-path of the current object path. annotations may containh @Path @Path

regular expression patterns that should be enclosed in brackets {}.

For example, let's say the following object matches the path:/nuxeo/site/users

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

312
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

@WebObject(type = "Users")
@Produces("text/html;charset=UTF-8")
public class Users extends DefaultObject {

 @GET
 public Object doGet() {
 return getView("index");
 }

 @Path("\{name\}")
 @GET
 public Object getUser(@PathParam("name") String username) {
 return getView("user").arg("user", username);
 }
 ...

The method will be invoked when a request is exactly matching the path and the HTTP method that was used isdoGet /nuxeo/site/users
GET.

The method will be invoked when a request is matching the path } where { } matches any pathgetUser /nuxeo/site/users/{name name
segment. So all requests on paths like , will match all the method. Because/nuxeo/site/users/foo /nuxeo/site/users/bar getUser
the path contains a pattern variable, you can use the annotation to inject the actual value of that variable into the method argument.@PathParam

You can also use a annotation to redirect calls to another JAX-RS resource. If you want this then you use use any HTTP method@Path must not
annotations in conjunction with - otherwise the method will be treated as a terminal method that is returning the response object to be sent@Path
to the client.

Example:

@WebObject(type = "Users")
@Produces("text/html;charset=UTF-8")
public class Users extends DefaultObject {

 @Path("name")
 public Object getUser(@PathParam("name") String username) {
 return new User(username);
 }
 ...

You can see in the example above the if the request matches a path like } then the resource will dispatch/nuxeo/site/users/{name Users
the call to another JAX-RS resource (i.e. object) that will be used to handle the response to the user (or to dispatch further the handling toUser
other JAX-RS resources).

Dispatching requests to WebObject sub-resources.

To dispatch the call to another WebObject instance you must use the method to instantiate the WebObject bynewObject(String type)
specifying its type as the argument. Example:

 @Path("users")
 public Object getUserManagement() {
 return newObject("UserManager");
 }

This method will dispatch the requests to the WebObject. The WebObject class is identified using the type value: "UserManager".UserManager

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

313
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

Module deployment

At server startup JARs containing files will be unzipped under directory.module.xml install_dir/web/root.war/modules/module_dir
The name is the bundle symbolic ID of the unzipped JAR. This way you can find easily which bundle deployed which module.module_dir

The is the installation directory for a standalone installation or the for a JBossinstall_dir jboss/server/default/data/NXRuntime
installation.

To deploy a module as a directory and not as an OSGi bundle you can simply copy the module directory into install_dir/web/root.war/de
. If deploy directory doesn’t exists you can create it.ploy

Note that when you deploy the module as an OSGi bundle the JAR will be unzipped only at first startup. If you update the JAR (the last modified
time changes) then the JAR will be unzipped again and will override any existing files.

Module structure

A web module can be deployed as a JAR file or as a directory. When deployed as a JAR file it will be unzipped in a directory at first startup.

The structure of the root of a deployed web module should follows this schema:

 /module.xml
 /i18n
 /skin
 /skin/resources
 /skin/views
 /META-INF

Every module must have a descriptor in its root. This file is used by WebEngine to detect which bundles should be deployed as webmodule.xml
modules.

The directory contains message bundle property files./i18n

The directory should contain the templates used to generate web pages and all the client resources (e.g. images, style sheets,/skin
client side scripts). The content of this directory is inherited from the super module if your module extend another module. This means if a
resource is not found in your module skin directory the super module will be asked for that resource and so on until the resource is found
or no more super modules exists.

The directories contains all client resources. Here you should put any image, style sheet or script you want to use on/skin/resources
the client. The content of this directory is directly visible in your web server under the path: { (see base_path}/module_name/skin Sta

).tic Resources

The directory should be used to store object views. An object view is usually a Freemarker template file that will be/skin/views
rendered in the request context and served when necessarily by the web object.

The } directory is usually storing the and other configuration or generated files that are internally used by the/META-INF MANIFEST.MF
server.

For that reason module classes or Groovy scripts must be put in well named packages and the package root must reside directly under the the
module root. Also, avoid to put classes in script directory.

Look into an existing WebEngine module like admin, base or wiki for examples on how to classes are structured.

Web Object Views

We saw in the examples above that WebObjects can return views as a response to the client. Views are in fact template files bound to the object.
To return a view from a WebObject you should do something like:

Be aware that the root directory of a module is added to the WebEngine classpath.

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

314
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

 @GET
 public Object doGet() {
 return getView("my_view");
 }

where is the view name. To bind a view to an object, you should put the view file in a folder named as the object type in the my_view /skin/vie
 directory. The view file name should have the same name as the view + the extension.ws .ftl

Example: Suppose we have an web object of type . To define a view named for this object, you should pit the view templateMyObject myview
file into . Doing this you can now use send the view to the client using a method like:/skin/views/MyObject/myview.ftl

@WebObject(type = "MyObject")
@Produces("text/html;charset=UTF-8")
public class MyObject extends DefaultObject {
 @GET
 public Object doGet() {
 return getView("myview");
 }
}

If a view file is not found inside the module directory then all super types are asked for that view. If the view is not found then the super modules (if
any) are asked for that view.

Extending Web Objects

You can extend an existing Web Object with your own object by defining the annotation.superType} attribute in the {{@WebObject
Example:

@WebObject(type = "JSONDocument", superType = "Document")

When extending an object you inherit all object views.

Extending Modules

When defining a new module you can extend existing modules by using the attribute in your module.xml file:extends

<module name="Admin" root-type="Admin" path="/admin" extends="base" />

The attribute is pointing to another module name that will become the base of the new module.extends

All WebObjects from a base module are visible in the derived modules (you can instantiate them using newObject("object_type")
.method)

Also, static resources and templates that are not found in a module will be searched into the base module if any until the resource is found or all
module hierarchy is consumed.

You can use this feature to create a base module that is providing a common look and feel for your applications and then extending it in modules
by overriding resources (or web page areas - see) that you need to change for your application.Template Model

Template Model

WebEngine defines also a template model that is used to build responses. The template engine is based on FreeMarker, plus some custom
extensions like template blocks. Using blocks you can build your web site in a modular fashion. Blocks are dynamic template parts that can be

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

315
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

extended or replaced using derived blocks. Using blocks, you can write a base template that may define the site layout (using blocks containing
empty or generic content) and then write final skins for your layout by extending the base template and redefining blocks you are interested in.

Templates are stored as files in the module bundle under the skin directory. Templates are resolved in the context of the current module. This
way, if a module is extending another module, a template will be first looked up into the derived module, then in its super modules until a template
it’s found or no more parent modules exists.

There is a special type of templates that we call views. The difference between views and regular templates is that views are always attached to
an Web Object Resource. This means, views are inherited from super types. Because of this the view file resolution is a bit different from
templates.

Views are first searched in the current module, by iterating over all resource super types. If not found then the super module is searched (if any)
and so on until a view file is found or no more parent modules exists.

Static resources

Template files are usually referencing external resources like static CSS, JavaScript or image files.

To refer to this type of resources you use relative paths to the module root (the entry point object). By doing this you avoid problemsmust always
generated by URL rewrite when putting your server behind a proxy.

Lets suppose we have a module entry point as follows:

@WebObject(type = "Admin", administrator=Access.GRANT)
@Produces("text/html;charset=UTF-8")
public class Main extends ModuleRoot {

 public Object doGet() {
 return getView("index");
 }

 ...
}

Suppose the object is bound to the path, and the view is referencing an image located in the module directorynuxeo/site/admin index.ftl
in . Then the image should be referenced using the following path:skin/resources/images/myimage.jpg

the path is relative to the current object so the image absolute path is ./nuxeo/site/admin/skin/images/myimage.jpg

So all static resources in a Web module are accessible under the path. You can get the module path from any view by/module_path/skin/
using the variable } or .${Root.path ${basePath}/module_name

Headless modules

By default WebEngine modules are listed in the WebEngine home page (i.e.). If you don't want to include your module in that list/nuxeo/site
you can use the attribute in your file:headless module.xml

<module name="my_module" root-type="TheRoot" path="/my_module" extends="base"
headless="true" />

Groovy Modules

You can write your Web Objects in Groovy and put object sources in the module directory.

Groovy support is not enabled by default. If you want to define web objects using Groovy you need to enable the ’groovy’ nature on the module.
This is an example on how to do this:

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

316
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

<module name="my_module" root-type="TheRoot" path="/my_module" >
 <nature>groovy</nature>
 ...
</module>

Building WebEngine projects

WebEngine is using types to classify web objects. When a request will be resolved to an web object the object type is retrieved first and asked to
instantiate a new object of that type which will be used to handle the request. This means all types in a module and in super modules must be
known after a module is loaded. Types are declared using annotations so detecting types at runtime may be costly. For this reason types are
discovered at build time and written to a file in the directory of the module.META-INF

/META-INF/web-types

To have this file generated you must use a correct maven for your project that will load a custom ’java apt’ processor during the build.pom.xml
See WebEngine pom files for how to write your pom files. Here is the declaration of the apt plugin that you need to put in the your WebEngine
module project:

<build>
 <plugins>
 ...
 <!-- APT plugin for annotation preprocessing -->
 <plugin>
 <groupId>org.apache.myfaces.tobago</groupId>
 <artifactId>maven-apt-plugin</artifactId>
 <executions>
 <execution>
 <id>generate-bindings</id>
 <goals>
 <goal>execute</goal>
 </goals>
 </execution>
 </executions>
 </plugin>
 <!-- end APT plugin -->
 ...
 </plugins>
</build>

Session And Transaction Management

Transaction Management

By default webengine will automatically start a transaction for any request to a JAX-RS application (or WebEngine module). The default locations
of static resources are omited (so that no transaction will be start when requesting a static resource). The static resources locations is */skin/* -
this will match any path that target a resource inside a directory in a JAX-RS application.skin

If you want to globally disable the automatic transaction management in WebEngine you can define the following runtime property:

Also, it is recommended to use to build the JAR of your module - this way you force the type file to be generatedmvn clean install
again.

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

317
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

org.nuxeo.webengine.tx.auto=false

in a .properties file inside the Nuxeo directory.config

Session Management

Also, WebEngine is providing a managed Core Session to any JAX-RS resource that want to connect to the repository.
WebEngine will close the managed Core Sessions when no more needed so you should not worry about leaking Core Sessions. These sessions
can be used either in JAX-RS resource methods, either in JAX-RS MessageBodyReaders or MessageBodyWriters.

By default the managed session is closed after the request ends (so it is stateless - a new request will use a new Core Session).
You also have the option to change this behavior and reuse the same session in all requests belonging to the same HttpSession. In that case the
session will be automatically closed when the HttpSession is invalidated. We call this Core Session management.stateful

If you want to globally turn on the stateful session management you can define the following runtime property:

org.nuxeo.webengine.session.stateful=true

in a .properties file inside the Nuxeo directory.config

To get the managed session from a JAX-RS resource you can use the following code:

UserSession.getCurrentSession(httpRequest);

If you don't have access to the current HTTP request object you can use this code: (in that case a ThreadLocal variable will be used to retrieve
the UserSession)

WebEngine.getActiveContext().getUserSession();

Then using the UserSession object you can either get the current principal either get a Core Session:

UserSession us = WebEngine.getActiveContext().getUserSession();
Principal principal = us.getPrincipal();
CoreSession session1 = us.getCoreSession();
CoreSession session2 = us.getCoreSession("myrepo");

When calling the method and no managed session was still created for the target repository then a new Core Session isgetCoreSession()
created and returned. If the Core Session was already created (by a previous getCoreSession() call) then the existing session is returned.

You can see that, there are two flavors of getCoreSession() method:

CoreSession getCoreSession()
CoreSession getCoreSession(String repositoryName)

The first one is returning a session for the default repository. The second one will return a session for the named repository.
By default the getCoreSession() method will use the default repository as configured in Nuxeo server - but you can change the repository that will
be used on a request basis. See next section for how to change the default repository used by the method.getCoreSession()

Selecting The Default Repository

Not that the UserSession object is available only in the context of a WebEngine request (i.e. inside JAX-RS applications or WebEngine
modules)

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

318
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

You can choose from client side which will be the repository used to create a managed Core Session.
To do this you can either use an HTTP request header:

X-NXRepository: myrepo

either a request parameter:

nxrepository=myrepo

If not specified the default repository defined by the Nuxeo server will be used.

So that, by specifying in the HTTP request a repository name, when calling UserSession.getCoreSession() - the return session will target the
repository you specified.

Doing cleanup at the end of the request.

Some JAX-RS resources will need to create temporary files or open other system resources that cannot be removed in the JAX-RS method
because they are used by MessageBodyWriters. In that case you can register a cleanup handler that will be invoked at the request end (after all
JAX-RS objects finished their work and response was sent to the servlet output stream).

To register a cleanup handler you can do the following:

UserSession.addRequestCleanupHandler(httpRequest, new RequestCleanupHandler() {
 cleanup(HttpServletRequest httpRequest) {

 }
});

The method will be invoked after the request was processed and the response created.cleanup

Configuring session and transaction management on a path basis

You can also configure how session and transaction is managed on a subset of resources in your JAX-RS application. To do this you can
contribute an extension as follows:

<extension target="" point="">
 <path value="/mymodule1" autoTx="false" stateful="true" />
 <path value="/mymodule2/resources" autoTx="false" />
 <path value="/mymodule3/.*\.gif" autoTx="false" regex="true"/>
</extension>

The first rule says that for any resource which path begins with "/mymodule1" then automatic transaction is off and stateful session management
is on.
The second one says that for any resource which path begins with "/mymodule2/resources" then automatic transaction is off and the default
session management will be used.
The third rule says that for any .gif file inside "/mymodule3" automatic transaction is off and default session management will be used.

By default the attribute represent a path prefix. If you want to use a regular expression you should specify regex="true".value

Path Rule Matching

All the contributed path matching rules will be ordered from the longest path to the shortest one in lexicographically order.
Regular expression rules will be always put after the prefix based rules (i.e. prefix based rules are).stronger
So that to find the best matching the path rules are iterated until a match occurs.

The recommended way to define rules is to use prefixes and not regular expression.

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

319
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

Paths specified in a rule must begin with a '/' (if not a '/' will be automatically added by WebEngine). These paths are matched against the
HttpServletRequest path info (which will always begin with a '/').

For example, given the following path matching rule contributions:

/a/b/d/.*\.gif
/a
/a/b/c
/b
/b/c

they will be ordered as following:

/a/b/c
/b/c
/a
/b
/a/b/d/.*\.gif

Thus, for the path: /a/b the first match will be /a - and will be used to define the session and transaction management for this resource.

WebEngine Tutorials

In this section we will go deeper into WebEngine model by proposing 5 samples on how to use common WebEngine concepts.

To install the sample modules you need to download the compiled jar and copy them s to a directory. is<NXSERVER>/plugins <NXSERVER>
the directory on JBoss distribution or the root directory on other distributions.jboss/server/default/deploy/nuxeo.ear nxserver

To correctly understand the tutorials you need to look into all .java and .ftl files you find in the corresponding sample modules. Each sample is well
documented in the corresponding classes using java docs.

You should download the binaries and sources (https://maven.nuxeo.org/nexus/index.html#nexus-search;gav~~nuxeo-webengine-samples*~~~)
from our maven repository (since 5.4.2).

 - Hello World.Tutorial 1

This tutorial demonstrates how to handle requests. This is the simplest object. It requires only one java class which represents the Resource (the
entry point).

You can access the tutorial sample at: http://localhost:8080/nuxeo/site/samples/hello
 - Using TemplatesTutorial 2

This tutorial demonstrates how to use templates to render dynamic content.

You can access the tutorial sample at: http://localhost:8080/nuxeo/site/samples/templating
 - Web Object ModelTutorial 3

This tutorial demonstrates the basics of the WebEngine Object Model. You can see how to create new Module Resources, Object Resources,
Adapter Resources and views.

You can access the tutorial sample at: http://localhost:8080/nuxeo/site/samples/basics
 - Working with DocumentsTutorial 4

This tutorial demonstrates how to access Nuxeo Platform Documents through WebEngine.
You can access the tutorial sample at: http://localhost:8080/nuxeo/site/samples/documents

 - Module ExtensibilityTutorial 5

This tutorial demonstrates how modules can be extended and how the links you are using in your templates can
be managed to create easy to maintain and modular applications.

You can access the tutorial sample at: http://localhost:8080/nuxeo/site/samples/extended

Hello World

Module definition

module.xml

http://doc.nuxeo.com/x/GATF
http://localhost:8080/nuxeo/site/samples/hello
http://localhost:8080/nuxeo/site/samples/templating
http://localhost:8080/nuxeo/site/samples/basics
http://localhost:8080/nuxeo/site/samples/documents
http://localhost:8080/nuxeo/site/samples/extended

 Nuxeo Enterprise Platform 5.4 Documentation

320
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

<?xml version="1.0"?>

<module name="sample1" root-type="sample1" path="/sample1">
 <nature>groovy</nature>
</module>

JAX-RS resources

Sample1.groovy

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

321
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

import javax.ws.rs.*;
import javax.ws.rs.core.*;
import org.nuxeo.ecm.core.rest.*;
import org.nuxeo.ecm.webengine.model.*;
import org.nuxeo.ecm.webengine.model.impl.*;
import org.nuxeo.ecm.webengine.model.exceptions.*;
import org.nuxeo.ecm.webengine.*;

/**
 * Web Module Main Resource Sample.
 * <p>
 * This demonstrates how to define the entry point for a WebEngine module.
 * <p>
 * The module entry point is a regular JAX-RS resource named 'Sample1' and with an
additional @WebModule annotation.
 * This annotation is mainly used to specify the WebModule name. I will explain the
rest of @WebModule attributes in the following samples.
 * A Web Module is implicitly defined by its entry point. You can also configure a Web
Module using a module.xml file located
 * in the module root directory. This file can be used to define: root resources (as
we've seen in the previous example), links, media type IDs
 * random extensions to other extension points; but also to define new Web Modules
without an entry point.
 * <p>
 * A Web Module's Main resource is the entry point to the WebEngine model build over
JAX-RS resources.
 * If you want to benefit of this model you should define such a module entry point
rather than using plain JAX-RS resources.
 * <p>
 * This is a very simple module example, that prints the "Hello World!" message.
 *
 * @author Bogdan Stefanescu
 */
@WebObject(type="sample1")
@Produces(["text/html"])
public class Sample1 extends ModuleRoot {

 @GET
 public String doGet() {
 return "Sample1: Hello World!";
 }

 @GET
 @Path("{name}")
 public String doGet(@PathParam("name") String name) {
 return "Sample1: Hello "+name+"!";
 }

}

Using FreeMarker Template Language (FTL)

Module definition

module.xml

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

322
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

<?xml version="1.0"?>

<module name="sample2" root-type="sample2" path="/sample2">
 <nature>groovy</nature>
</module>

JAX-RS resources

Sample2.groovy

import javax.ws.rs.*;
import javax.ws.rs.core.*;
import org.nuxeo.ecm.webengine.model.impl.*;
import org.nuxeo.ecm.webengine.model.*;

/**
 * Templates sample.
 *
 * This demonstrates how to use template files to build client responses.
 * JAX-RS provides a flexible mechanism to send responses based on the mime type that
the client expects.
 * To send a response to the client you simply return the Object you want as the
response.
 * JAX-RS engines will usually know how to render common Java objects like String,
InputStream, File etc.
 * If you need to output specific objects you need to register a custom
MessageBodyWriter class.
 * In JAX-RS you are not able to modify the HttpServletResponse object directly from a
resource method. (add headers, cookies etc)
 * Anything you may want to output must be returned from the resource method back to
JAX-RS engine, and the engine will output it for you.
 * This is a very good thing, even if for some people this approach may seem strange.
 * You may ask yourself, ok cool, The response rendering is pretty well separated from
the resource logic.
 * But how can I modify response headers?
 * In that case you must return a javax.ws.rs.Response that may be used to customize
your response headers.
 * <p>
 * WebEngine is adding a new type of response objects: templates.
 * Templates are freemarker based templates that can be used to render your objects
depending on the request context.
 * WebEngine is adding some cool extensions to freemarker templates that let you build
your web site in a modular fashion.
 * These extensions are called blocks. Blocks are dynamic template parts that can be
extended or replaced using derived blocks.
 * Using blocks, you can write a base template that may define the site layout (using
blocks containing empty or generic content) and then
 * write final <i>skins</i> for your layout by extending the base template and
redefining blocks you are interested in.
 * See the <i>skin</i> directory for template examples.
 * <p>
 * Templates are stored in files under the <i>skin</i> directory. Templates are always
resolved relative to the <i>skin</i> directory,
 * even if you are using absolute paths.
 * The following variables are accessible from a template when rendered at rendering

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

323
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

time:
 *
 * <code>Context</code> - the WebContext instance
 * <code>Engine</code> - the WebEngine instance
 * <code>This</code> - the target Web Object.
 * <code>Root</code> - the root WebObject.
 * <code>Document</code> - the target Document if any otherwise null.
 * <code>Session</code> - the Repository Session. (aka Core Session)
 * <code>basePath</code> - the request base path (context path + servlet path)
 *
 * To render a template as a response you need to instantiate it and then return it
from the resource method.
 * The template will be processed by the corresponding MessageBodyWriter and rendered
on the client stream.
 *
 * @author Bogdan Stefanescu
 */
@WebObject(type="sample2")
@Produces(["text/html"])
public class Sample2 extends ModuleRoot {

 @GET
 public Object doGet() {
 return "Sample2: Hello World!";
 }

 /**
 * Return the template index.ftl from 'skin' directory
 */
 @GET
 @Path("index1")
 public Object getIndex1() {
 return getTemplate("index1.ftl");
 }

 /**
 * Inject the variable 'name' in the template context and then return the template.
 */
 @GET
 @Path("index1/{name}")
 public Object getIndex1(@PathParam("name") String name) {
 return getTemplate("index1.ftl").arg("name", name);
 }

 /**
 * Render the index2 template
 */
 @GET
 @Path("index2")
 public Object getIndex2() {
 return getTemplate("index2.ftl");
 }

 /**
 * Example of using redirect.
 * The redirect method inherited from DefaultModule is returning a Response object
that is doing a redirect
 */

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

324
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

 @GET
 @Path("redirect/{whereToRedirect}")
 public Response doRedirect(@PathParam("whereToRedirect") String path) {
 return redirect(ctx.getModulePath() + "/"+ path);
 }

 /**
 * Example of using a Response object.
 * This method is sending a 403 HTTP error.
 */
 @GET
 @Path("error/{errorCode}")
 public Response sendError(@PathParam("errorCode") String errorCode) {
 try {
 int statusCode = Integer.parseInt(errorCode);
 Response.Status status = Response.Status.fromStatusCode(statusCode);
 if (status != null) {
 return Response.status(status).build();
 }
 } catch (Exception e) {
 }
 return Response.status(500).entity("Invalid error code: " + errorCode).build();
 }

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

325
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

}

Object views

skin/base.ftl

<!-- Base template that defines the site layout -->
<html>
 <head>
 <title><@block name="title"/></title>
 </head>
 <body>
 <table width="100%" border="1">
 <tr>
 <td><@block name="header">Header</@block></td>
 </tr>
 <tr>
 <td><@block name="content">Content</@block></td>
 </tr>
 <tr>
 <td><@block name="footer">Footer</@block></td>
 </tr>
 </table>
 </body>
</html>

skin/index1.ftl

<@extends src="base.ftl">
 <@block name="title">Index 2</@block>
 <@block name="header">
 <#if name>
 Hello ${name}!
 <#else>
 Hello World!
 </#if>
 </@block>
 <@block name="content">
 This is the <i>index1</i> skin.
 </@block>
 <@block name="footer">
 The footer here ...
 </@block>
</@extends>

skin/index2.ftl

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

326
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

<@extends src="base.ftl">
 <@block name="title">Index 2</@block>
 <@block name="content">
 This is the <i>index2</i> skin.
 </@block>
</@extends>

Web Object Model

Module definition

module.xml

<?xml version="1.0"?>

<module name="sample3" root-type="sample3" path="/sample3">
 <nature>groovy</nature>
</module>

JAX-RS resources

Sample3.groovy

import javax.ws.rs.*;
import javax.ws.rs.core.*;
import org.nuxeo.ecm.webengine.model.impl.*;
import org.nuxeo.ecm.webengine.model.*;

/**
 * WebEngine Object Model.
 *
 * This sample is explaining the basics of Nuxeo WebEngine Object Model.
 * <p>
 *
 * <h3>Resource Model</h3>
 * Resources are objects used to serve the request. WebEngine Resources are always
stateless (a new instance is created on each request).
 * There are three type of resources defined by WebEngine:
 *
 * Module Resource - this is the Web Module entry point as we've seen in sample3.
 * This is the root resource. The other type of resources are JAX-RS sub-resources.
 * A WebModule entry point is a special kind of WebObject having as type name the
module name.
 * Web Object - this represents an object that can be requested via HTTP methods.
 * This resource is usually wrapping some internal object to expose it as a JAX-RS
resource.
 * Web Adapter - this is a special kind of resource that can be used to adapt Web
Objects
 * to application specific needs.
 * These adapters are useful to add new functionalities on Web Objects without
breaking application modularity
 * or adding new methods on resources.

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

327
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

 * This is helping in creating extensible applications, in keeping the code cleaner
and in focusing better on the REST approach
 * of the application.
 * For example let say you defined a DocumentObject which will expose documents as
JAX-RS resources.
 * A JAX-RS resources will be able to respond to any HTTP method like GET, POST, PUT,
DELETE.
 * So let say we use:
 *
 * <code>GET</code> to get a view on the DocumentObject
 * <code>POST</code> to create a DocumentObject
 * <code>PUT</code> to update a document object
 * <code>DELETE</code> to delete a DocumentObject.
 *
 * But what if I want to put a lock on the document? Or to query the lock state? or to
remove the lock?
 * Or more, to create a document version? or to get a document version?
 * A simple way is to add new methods on the DocumentObject resource that will handle
requests top lock, unlock, version etc.
 * Somethig like <code>@GET @Path("lock") getLock()</code> or <code>@POST
@Path("lock") postLock()</code>.
 * But this approach is not flexible because you cannot easily add new fonctionalities
on existing resources in a dynamic way.
 * And also, doing so, you will end up with a cluttered code, having many methods for
each new aspect of the Web Object you need to handle.
 * To solve this problem, WebEngine is defining Web Adapters, so that they can be used
to add new fonctionality on existing objects.
 * For example, to handle the lock actions on an Web Object we will define a new class
LockAdapter which will implement
 * the <code>GET</code>, <code>POST</code>, <code>DELETE</code> methods to manage the
lock fonctionality on the target Web Object.
 * Adapters are specified using an '@' prefix on the segment in an HTTP request path.
This is needed by WebEngine to differentiate
 * Web Objects from Web Adapters.
 * Thus in our lock example to request the lock adapter on an object you will use a
request path of like the following:
 * <code>GET /my/document/@lock</code> or <code>POST /my/document/@lock</code> etc.
 * <p>
 * When defining a Web Adapter you can specify on which type of Web Object it may be
used. (this is done using annotations)
 *
 * All WebEngine resources have a type, a super type, an optional set of facets and an
optional guard (these are declared using annotations)
 * By using types and super types you can create hierarchies or resources, so that
derived resource types will inherit attributes of the super types.
 * <p>
 *
 * There is a builtin adapter that is managing Web Objects views. The adapter name is
<code>@views</code>.
 * You will see in the view model an example on how to use it.
 * <p>
 *
 * Thus, request paths will be resolved to a resource chain usually of the form:
WebModule -> WebObject -> ... -> WebObject [-> WebAdapter].
 *

 * Each of these resource objects will be <i>served</i> using the <i>sub-resource</i>
mechanism of JAX-RS until the last resource is reached.
 * The last resource will usually return a view to be rendered or a redirection
response.

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

328
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

 * The request resource chain is exposed by the WebContext object, so that one can
programatically retrieve any resource from the chain.
 * In a given resource chain there will be always 2 special resources: a root
and a target resource
 * The root resource is exposed in templates as the <code>Root</code> object and the
target one as the contextual object: <code>This</code>.
 *

 * Note that the root resource is not necessarily the first one, and the target
resource is not necessarily the last one!
 * More, the root and the target resources are never WebAdapters. They can be only
WebObjects or WebModule entry points
 * (that are aspecial kind of WebObjects).
 * <p>
 * The root resource is by default the module entry point (i.e. the first resource in
the chain) but can be programatically set to point to any other
 * WebObject from the chain.
 * <p>
 * The target resource will be always the last WebObject resource from the chain.(so
any trailing WebAdapters are excluded).
 * This means in the chain: <code>/my/space/doc/@lock</code>, the root will be by
default <code>my</code> which is the module entry point,
 * and the target resource will be <code>doc</doc>. So it means that the
<code>$This</code> object exposed to templates (and/or views) will
 * never points to the adapter <code>@lock</code> - but to the last WebObject in the
chain.
 * So when an adapter view is rendered the <code>$This</code> variable will point to
the adapted WebObject and not to the adapter itself.
 * In that case you can retrieve the adapter using <code>${This.activeAdapter}</code>.
 * This is an important aspect in order to correctly understand the behavior of the
<code>$This</code> object exposed in templates.
 * <p>
 * <p>
 * <h3>View Model</h3>
 * The view model is an extension of the template model we discussed in the previous
sample.
 * The difference between views and templates is that views are always attached to an
Web Object. Also, the view file resolution is
 * a bit different from template files. Templates are all living in <code>skin</skin>
directory. Views may live in two places:
 *
 * in the skin/views/${type-name} folders where type-name is the resource type
name the view is applying on.
 * This location will be consulted first when a view file is resolved, so it can be
used by derived modules to replace views on already defined objects.
 * in the same folder (e.g. java package) as the resource class.
 * This location is useful to defining views inside JARs along with resource classes.
 *
 * Another specific property of views is that they are inherited from resource super
types.
 * For example if you have a resource of type <code>Base</code> and a resource of type
<code>Derived</code> then all views
 * defined on type <code>Base</code> apply on type <code>Dervied</code> too.
 * You may override these views by redefining them on type <code>Derived</code>
 *

 * Another difference between templates and views is that views may vary depending on
the response media-type.
 * A view is identified by an ID. The view file name is computed as follow:
 * <pre>
 * view_id + [-media_type_id] + ".ftl"

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

329
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

 * </pre>
 * The <code>media_type_id</code> is optional and will be empty for media-types not
explicitely bound to an ID in modules.xml configuration file.
 * For example, to dynamically change the view file corresponding to a view
 * having the ID <code>index</code> when the response media-type is
<code>application/atom+xml</code>
 * you can define a mapping of this media type to the media_type_id <code>atom</code>
and then you can use the file name
 * <code>index-atom.ftl</code> to specify a specific index view when <code>atom</code>
output is required.
 *
 * @author Bogdan Stefanescu
 */
@WebObject(type="sample3")
@Produces(["text/html"])
public class Sample3 extends ModuleRoot {

 /**
 * Get the index view. The view file name is computed as follows:
index[-media_type_id].ftl
 * First the skin/views/sample4 is searched for that file then the current
directory.
 * (The type of a module is the same as its name)
 */
 @GET
 public Object doGet() {
 return getView("index");
 }

 /**
 * Get the WebObject (i.e. a JAX-RS sub-resource) bound to "users".
 * Look into "users" directory for the UserManager WebObject. The location of
WebObjects is not explictely specified by the programmer.
 * The module directory will be automatically scanned for WebObject and WebAdapters.
 */
 @Path("users")
 public Object getUserManager() {
 // create a new instance of an WebObject which type is "UserManager" and push this
object on the request chain
 return newObject("UserManager");
 }

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

330
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

}

users/UserManager.groovy

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

331
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

package users;

import javax.ws.rs.*;
import javax.ws.rs.core.*;
import org.nuxeo.ecm.webengine.model.impl.*;
import org.nuxeo.ecm.webengine.model.*;

/**
 * UserManager object.
 * You can see the @WebObject annotation that is defining a WebObject of type
"UserManager"
 * @author Bogdan Stefanescu
 */
@WebObject(type="UserManager")
@Produces(["text/html", "*/*"])
public class UserManager extends DefaultObject {

 /**
 * Get the index view. The view file name is computed as follows:
index[-media_type_id].ftl
 * First the skin/views/UserManager is searched for that file then the current
directory.
 * (The type of a module is the same as its name)
 */
 @GET
 public Object doGet() {
 return getView("index");
 }

 /**
 * A hack to accept users as user?name=xxx query parameters
 */
 @GET
 @Path("user")
 public Object getUserByQueryString(@QueryParam("name") String name) {
 if (name == null) {
 return doGet();
 } else {
 return redirect(getPath()+"/user/"+name);
 }
 }

 /**
 * Get the user JAX-RS resource given the user name
 */
 @Path("user/{name}")
 public Object getUser(@PathParam("name") String name) {
 // create a new instance of a WebObject which type is "User" and push this object
on the request chain
 // the User object is intialized with the String "Username: name"
 return newObject("User", "Username: "+name);
 }

}

users/User.groovy

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

332
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

package users;

import javax.ws.rs.*;
import javax.ws.rs.core.*;
import org.nuxeo.ecm.webengine.model.impl.*;
import org.nuxeo.ecm.webengine.model.*;

/**
 * User object.
 * You can see the @WebObject annotation that is defining a WebObject of type "User"
 * @author Bogdan Stefanescu
 */
@WebObject(type="User")
@Produces(["text/html", "*/*"])
public class User extends DefaultObject {

 String displayName;

 /**
 * Initialize the object.
 * args values are the one passed to the method newObject(String type, Object ...
args)
 */
 protected void initialize(Object... args) {
 displayName = args[0];
 }

 /**
 * Getter the variable displayName. Would be accessible from views with
${This.displayName}
 */
 public String getDisplayName() {
 return displayName;
 }

 /**
 * Get the index view of the User object.
 * The view file is located in <code>skin/views/User</code> so that it can be easily
extended
 * by a derived module. See extensibility sample.
 */
 @GET
 public Object doGet() {
 return getView("index");
 }

 /**
 * This method is not implemented but demonstrates how DELETE requests can be used
 */
 @DELETE
 public Object doRemove(@PathParam("name") String name) {
 //TODO ... remove user here ...
 // redirect to the UserManager (the previous object in the request chain)
 return redirect(getPrevious().getPath());
 }

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

333
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

 /**
 * This method is not implemented but demonstrates how PUT requests can be used
 */
 @PUT
 public Object doPut(@PathParam("name") String name) {
 //TODO ... update user here ...
 // redirect to myself
 return redirect(getPath());
 }

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

334
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

}

users/UserBuddies.groovy

package users;

import javax.ws.rs.*;
import javax.ws.rs.core.*;
import org.nuxeo.ecm.webengine.model.impl.*;
import org.nuxeo.ecm.webengine.model.*;

/**
 * UserBuddies object.
 * You can see the @WebAdapter annotation that is defining a WebAdapter of type
"UserBuddies" that applies to any User WebObject.
 * The name used to access this adapter is the adapter name prefixed with a '@'
character: <code>@buddies</code>
 *
 * @author Bogdan Stefanescu
 */
@WebAdapter(name="buddies", type="UserBuddies", targetType="User")
@Produces(["text/html", "*/*"])
public class UserBuddies extends DefaultAdapter {

 /**
 * Get the index view. The view file name is computed as follows:
index[-media_type_id].ftl
 * First the skin/views/UserBuddies is searched for that file then the current
directory.
 * (The type of a module is the same as its name)
 */
 @GET
 public Object doGet() {
 return getView("index");
 }

}

Object views

skin/views/sample3/index.ftl

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

335
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

<html>
 <head>
 <title>Sample3</title>
 </head>
 <body>
 <h3>Sample3 Index View.</h3>
 <p>User Management</p>
 </body>
</html>

skin/views/UserManager/index.ftl

<html>
 <head>
 <title>Sample3</title>
 </head>
 <body>
 <h3>UserManager Index</h3>
 <form method="GET" action="${This.path}/user" onSubmit="">
 Enter a fictive User name: <input type="text" name="name" value=""/>
 </form>
 </body>
</html>

skin/views/User/index.ftl

<html>
 <head>
 <title>Sample3</title>
 </head>
 <body>
 <h3>${This.displayName}</h3>
 View my buddies
 </body>
</html>

skin/views/UserBuddies/index.ftl

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

336
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

<html>
 <head>
 <title>Sample3 - Adapter example</title>
 </head>
 <body>
 <#-- Look here how $This is used to access current user and not Buddies adapter
-->
 <h3>Buddies for user ${This.name}!</h3>
 <#-- Look here how to access the adapter instance: ${This.activeAdapter} -->
 This is an adapter named ${This.activeAdapter.name}

 Buddies:
 Tom
 Jerry

 </body>
</html>

Working with Documents

Module definition

module.xml

<?xml version="1.0"?>

<module name="sample4" root-type="sample4" path="/sample4" extends="base">
 <nature>groovy</nature>
</module>

JAX-RS resources

Sample4.groovy

import javax.ws.rs.*;
import javax.ws.rs.core.*;
import org.nuxeo.ecm.core.rest.*;
import org.nuxeo.ecm.webengine.model.impl.*;
import org.nuxeo.ecm.webengine.model.*;
import org.nuxeo.ecm.webengine.model.exceptions.*;

/**
 * Working with Nuxeo Documents.
 *
 * Nuxeo Documents are transparently mapped to WebObjects so that you can easily
access your documents
 * through WebEngine.
 * Nuxeo Documents are defined by a document type and can be structured in a hierarchy
based on their type.
 * The ancestor of all document types is the "Document" type.
 * Document types are transparently mapped to WebObject types, so that you don't need
to explicitely declare

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

337
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

 * WebObjects that expose documents. By default all documents are exposed as
DocumentObject instances (which is an WebObject).
 * If you need specific control over your document type you need then to explicitely
declare a new WebObject using the same
 * type name as your document type. This way, the default binding to DocumentObject
will be replaced with your own WebObject.
 * <p>
 * Note that it is recommended to subclass the DocumentObject when redefining
document WebObjects.
 * <p>
 * Also, Documents as WebObjects may have a set of facets. Documents facets are
transparently exposed as WebObject facets.
 * When redefining the WebObject used to expose a Document you can add new facets
using @WebObject annotation
 * (these new facets that are not existing at document level but only at WebObject
level).
 * <p>
 * To work with documents you need first to get a view on the repository. This can be
done using the following methods:
 *

 * <code>DocumentFactory.getDocumentRoot(ctx, path)</code> or
<code>DocumentFactory.getDocument(ctx, path)</code>
 *

 * The difference between the two methods is that the getDocumentRoot is also setting
 * the newly created document WebObject as the root of the request chain.
 * The document WebObject created using the DocumentFactory helper class will
represent the root of your repository view.
 * To go deeper in the repository tree you can use the <code>newDocument</code>
methods on the DocumentObject instance.
 * <p>
 * Remember that when working with documents you may need to log in to be able
to access the repository.
 * (it depends on whether or not the repository root is accessible to Anonymous user)
 * For this reason we provide in this example a way to login into the repository.
 * This also demonstrates how to handle errors in WebEngine. The mechanism is
simple:
 * At your module resource level you redefine a method
 * <code>public Object handleError(WebApplicationException e)</code> that will be
invoked each time
 * an uncatched exception is thrown during the request. From that method you should
return a suitable response to render the error.
 * To ensure exceptions are correclty redirected to your error handler you must catch
all exceptions thrown in your resource methods
 * and rethrowing them as following: <code> ... } catch (Throwable t) { throw
WebException.wrap(t); } </code>.
 * The exception wrapping is automatically converting exceptions to the ones defined
by WebEngine model.
 * <p>
 * The default exception handling defined in ModuleRoot class is simply printing the
exception on the output stream.
 *
 * @author Bogdan Stefanescu
 */
@WebObject(type="sample4")
@Produces(["text/html"])
public class Sample4 extends ModuleRoot {

 @GET
 public Object doGet() {

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

338
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

 return getView("index");
 }

 /**
 * Get a repository view rooted under "/default-domain".
 */
 @Path("repository")
 public Object getRepositoryView() {
 return DocumentFactory.newDocumentRoot(ctx, "/default-domain");
 }

 /**
 * Example on how to handle errors
 */
 public Response handleError(WebApplicationException e) {
 if (e instanceof WebSecurityException) {
 // display a login page
 return Response.status(401).entity(getTemplate("error/error_401.ftl")).build();
 } else if (e instanceof WebResourceNotFoundException) {
 return Response.status(404).entity(getTemplate("error/error_404.ftl")).build();
 } else {
 // not interested in that exception - use default handling
 return super.handleError(e);
 }
 }

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

339
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

}

Object views

skin/base.ftl

<!-- base template -->
<html>
 <head>
 <title><@block name="title"/>Sample4</title>
 </head>
 <body>
 <@block name="content"/>
 </body>
</html>

skin/views/sample4/index.ftl

<@extends src="base.ftl">
<@block name="title">Sample 4: Working with documents</@block>
<@block name="content">

Browse repository

</@block>
</@extends>

skin/views/Document/index.ftl

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

340
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

<@extends src="base.ftl">

<@block name="content">
 <h2>${Document.title}</h2>
 <div>Document ID: ${Document.id}
 <div>Document path: ${Document.path}
 <div>Document name: ${Document.name}
 <div>Document type: ${Document.type}

 <#-- Here we declare a nested block. Look in sample6 how nested block can be
redeclared -->
 <@block name="info">

 <div>
 Document schemas:

 <#list Document.schemas as schema>
 ${schema}
 </#list>

 </div>
 <div>
 Document facets:

 <#list Document.facets as facet>
 ${facet}
 </#list>

 </div>
 </@block>

 <#if Document.isFolder>
 <hr>
 <div>
 Document children:

 <#list Document.children as doc>
 ${doc.name}
 </#list>

 </div>
 </#if>

</@block>
</@extends>

Templates

skin/error/error_401.ftl

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

341
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

<@extends src="base.ftl">
<@block name="header"><h1>Error</h1></@block>
<@block name="content">

<h1>401 - Unauthorized</h1>

<p>
You don't have privileges to access this page
</p>
<p>

</p>
<#include "error/login.ftl">

</@block>
</@extends>

skin/error/error_404.ftl

<@extends src="base.ftl">
<@block name="header"><h1>Error</h1></@block>
<@block name="content">

<h1>404 - Resource Not Found</h1>

The page you requested doesn't exists

</@block>
</@extends>

skin/error/login.ftl

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

342
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

<!-- Login Form -->
<form action="${Context.loginPath}" method="POST">
<table cellpadding="4" cellspacing="1">
 <tr>
 <td>Username:</td>
 <td><input name="username" type="text"></td>
 </tr>
 <tr>
 <td>Password:</td>
 <td><input name="password" type="password"></td>
 </tr>
 <tr align="right">
 <td colspan="2">
 <input type="submit" value="Sign In"/>
 </td>
 </tr>
 <#if Context.getProperty("failed") == "true">
 <tr align="center">
 <td colspan="2">Authentication Failed!</td>
 </tr>
 </#if>
</table>
</form>

Module Extensibility

The module defined here extends the module defined in .Tutorial 4

Module definition

module.xml

<?xml version="1.0"?>

<module name="sample5" root-type="sample5" path="/sample5" extends="sample4">
 <nature>groovy</nature>
</module>

JAX-RS resources

Samples5.groovy

import javax.ws.rs.*;
import javax.ws.rs.core.*;
import org.nuxeo.ecm.core.rest.*;
import org.nuxeo.ecm.webengine.model.impl.*;
import org.nuxeo.ecm.webengine.model.*;
import org.nuxeo.ecm.webengine.model.exceptions.*;

/**
 * Web Module Extensibility.

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

343
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

 *
 * This sample is demonstrating how existing web modules can be extended.
 * To extend another module you should use the <code>base="BaseModule"</code> in the
<code>@WebModule</code>
 * annotation. This way the new module will inherit all templates and resources
defined in the base module.
 * You can thus create a chain of inherited web modules.
 * <p>
 * Here is how template resolval will be impacted by the module inheritance:
 *

 * <i>If a template T is not found in skin directory of derived module then search the
template inside the base module and so on
 * until a template is found or no more base module exists.</i>
 * The view resolval is similar to the template one but it will use the WebObject
inheritance too:
 *

 * <i></i>
 *

 * Note that only the <i>skin</i> directory is stacked over the one in the base
module.
 * The other directories in the module are not inheritable.
 * <p>
 * Also, resource types defined by the base module will become visible in the derived
one.
 * <p>
 * In this example you will also find a very useful feature of WebEngine: the builtin
view service adapter.
 * This adapter can be used on any web object to locate any view declared on that
object.
 * Let's say we define a view named <i>info</i> for the <i>Document</i> WebObject
type.
 * And the following request path will point to a Document WebObject:
<code>/my/doc</code>.
 * Then to display the <i>info</i> view we can use the builtin views adapter this way:
 * <code>/my/doc/@views/info</code>.
 * <p>
 * Obviously, you can redefine the WebObject corresponding to your document type and
add a new method that will dispatch
 * the view <info>info</info> using a pretty path like <code>/my/doc/info</code>. But
this involves changing code.
 * If you don't want this then the views adapter will be your friend.
 *
 * <p>
 * <p>
 * This example will extend the module defined in sample5 and will reuse and add more
templates.
 * Look into template files to see how base module templates are reused.
 *
 * @author Bogdan Stefanescu
 */
@WebObject(type="sample5")
@Produces(["text/html"])
public class Sample5 extends Sample4 {

 /**
 * We are reusing bindings declared in the main class from sample5 and only a new
one.
 */
 @Path("info")

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

344
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

 @GET
 public Object getInfo() {
 return "This is the 'info' segment added by the derived module";
 }

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

345
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

}

Object views

h5 skin/views/sample5/index.ftl

<#-- we are reusing the base template from the base module -->
<@extends src="base.ftl">

<#-- we are redefining only the title block -->
<@block name="title">Sample 5: Web Module Extensibility</@block>

<@block name="content">
Browse repository
</@block>

</@extends>

skin/views/Document/index.ftl

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

346
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

<#-- we reuse base.ftl from base module -->
<@extends src="base.ftl">

<@block name="content">
 <h2>${Document.title}</h2>
 <div>Document ID: ${Document.id}</div>
 <div>Document path: ${Document.path}</div>
 <div>Document name: ${Document.name}</div>
 <div>Document type: ${Document.type}</div>

 <p>
 <#-- we redefine the nested block info by adding a link to another view named
'info' on the document -->
 <@block name="info">
 <#-- look how the builtin view service adapter is used to locate the 'info' view
-->
 More Info
 </@block>
 </p>

 <#if Document.isFolder>
 <hr/>
 <div>
 Document children:

 <#list Document.children as doc>
 ${doc.name}
 </#list>

 </div>
 </#if>

</@block>
</@extends>

skin/views/Document/info.ftl

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

347
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

<@extends src="base.ftl">

<#--
Here is an additional view on a document added by the derived module.
You can display the view by using the builtin View Service adapter.
Example: /my/doc/@views/info
-->

<@block name="content">
 <h2>More info on document ${Document.title}</h2>
 <h3>Last modified: ${Document["dc:modified"]}</h3>
 <div>
 Document schemas:

 <#list Document.schemas as schema>
 ${schema}
 </#list>

 </div>
 <div>
 Document facets:

 <#list Document.facets as facet>
 ${facet}
 </#list>

 </div>
</@block>

</@extends>

Managing Links

Module definition

module.xml

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

348
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

<?xml version="1.0"?>
<module name="sample6" root-type="sample6" path="/sample6" extends="base">
 <nature>groovy</nature>

 <links>
 <!-- link IDs are normally used as the keys of i18n messages - but in this example
we are displaying them directly without using i18n mechanism-->
 <!-- link to a info view available for all Documents (i.e. WebObjects that are
derived from Document type) -->
 <link id="Info" path="/@views/info">
 <category>TOOLS</category>
 <category>INFO</category>
 <type>Document</type>
 </link>

 <!-- Link enabled only for folderish documents -->
 <link id="Children" path="/@views/children">
 <facet>Folderish</facet>
 <type>Document</type>
 <category>TOOLS</category>
 </link>

 <!-- this is only demonstrating link conditions - this is not a real link...
 This link will be enabled only for WebObject derived from Workspace
 -->
 <link id="I am a workspace" path="">
 <type>Workspace</type>
 <category>TOOLS</category>
 </link>
 </links>

</module>

JAX-RS resources

Sample6.groovy

import javax.ws.rs.*;
import javax.ws.rs.core.*;
import org.nuxeo.ecm.core.rest.*;
import org.nuxeo.ecm.webengine.model.impl.*;
import org.nuxeo.ecm.webengine.model.*;
import org.nuxeo.ecm.webengine.model.exceptions.*;

/**
 * Managing links.
 * <p>
 * Almost any template page will contain links to other pages in your application.
 * These links are usually absolute paths to other WebObjects or WebAdapters
(including parameters if any).
 * Maintaining these links when application object changes is painful when you are
using modular applications
 * (that may contribute new views or templates).
 * <p>
 * WebEngine is providing a flexible way to ease link management.

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

349
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

 * First, you should define all of your links in <i>module.xml</i> configuration file.
 * A Link is described by a target URL, an enablement condition, and one or more
categories that can be used to organize links.
 *
 * Here are the possible conditions that you can use on links:
 * type - represent the target Web Object type. If present the link will be
enabled only in the context of such an object.
 * adapter - represent the target Web Adapter name. If present the link will be
enabled only if the active adapter is the same as this one.
 * facet - a set of facets that the target web object must have in order to
enable the link.
 * guard - a guard to be tested in order to enable the link. This is using the
guard mechanism of WebEngine.
 *
 * If several conditions are specified an <code>AND</code> will be used between them.
 * <p>
 * Apart conditions you can <i>group</i> links in categories.
 * Using categories and conditions you can quickly find in a template which are all
enabled links that are part of a category.
 * This way, you can control which links are written in the template without needing
to do conditional code to check the context if links are enabled.
 * <p>
 * Conditions and categories manage thus where and when your links are displayed in a
page. Apart this you also want to have a target URL for each link.
 *
 * You have two choices in specifying such a target URL:
 * define a custom link handler using the <code>handler</handler> link attribute.
 * The handler will be invoked each time the link code need to be written in the
output stream so that it can programatically generate the link code.
 * use the builtin link handler. The builtin link handler will append the
<code>path</code> attribute you specified in link definition
 * to the current WebObject path on the request. This behavior is good enough for most
of the use cases.
 *
 *
 * <p>
 * <p>
 * This example will demonstrate how links work. Look into <code>module.xml</code> for
link definitions
 * and then in <code>skin/views/Document/index.ftl</code> on how they are used in the
template.
 *
 * @author Bogdan Stefanescu
 */
@WebObject(type="sample6")
@Produces(["text/html"])
public class Sample6 extends ModuleRoot {

 @GET
 public Object doGet() {
 return getView("index");
 }

 /**
 * Get a repository view rooted under "/default-domain".
 */
 @Path("repository")
 public Object getRepositoryView() {
 return DocumentFactory.newDocumentRoot(ctx, "/default-domain");

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

350
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

 }

 /**
 * Example on how to handle errors
 */
 public Response handleError(WebApplicationException e) {
 if (e instanceof WebSecurityException) {
 // display a login page
 return Response.status(401).entity(getTemplate("error/error_401.ftl")).build();
 } else if (e instanceof WebResourceNotFoundException) {
 return Response.status(404).entity(getTemplate("error/error_404.ftl")).build();
 } else {
 // not interested in that exception - use default handling
 return super.handleError(e);
 }
 }

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

351
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

}

Object views

skin/base.ftl

<html>
 <head>
 <title>Sample 6: Working with links</title>
 </head>
 <body>
 <@block name="content"/>
 </body>
</html>

skin/views/sample6/index.ftl

<@extends src="base.ftl">

 <@block name="content">
 Browse Repository: repository
 </@block>

</@extends>

skin/views/Document/index.ftl

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

352
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

<@extends src="base.ftl">

<@block name="content">
 <h2>${Document.title}</h2>

<table width="100%" border="1">
 <tr>
 <td>
 <div>Document ID: ${Document.id}
 <div>Document path: ${Document.path}
 <div>Document name: ${Document.name}
 <div>Document type: ${Document.type}
 <hr>
 <#if Document.isFolder>
 <div>
 Document children:

 <#list Document.children as doc>
 ${doc.name}
 </#list>

 </div>
 </#if>
 </td>
 <td>
 <#-- display here the links available in the current context in category INFO
-->

 Tools
 <#list This.getLinks("INFO") as link>
 ${link.id}
 </#list>

 <#-- display here the links available in the current context in category TOOLS
-->

 Adminitsration
 <#list This.getLinks("TOOLS") as link>
 ${link.id}
 </#list>

 </td>
 </tr>
</table>

</@block>
</@extends>

skin/views/Document/children.ftl

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

353
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

<@extends src="base.ftl">

<@block name="content">
 <#if Document.isFolder>
 <div>
 Document children:

 <#list Document.children as doc>
 ${doc.name}
 </#list>

 </div>
 </#if>
</@block>

</@extends>

skin/views/Document/info.ftl

<@extends src="base.ftl">

<@block name="content">
 <h2>More info on document ${Document.title}</h2>
 <h3>Last modified: ${Document["dc:modified"]}</h3>
 <div>
 Document schemas:

 <#list Document.schemas as schema>
 ${schema}
 </#list>

 </div>
 <div>
 Document facets:

 <#list Document.facets as facet>
 ${facet}
 </#list>

 </div>

</@block>

</@extends>

Templates

skin/error/error_401.ftl

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

354
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

<@extends src="base.ftl">
<@block name="header"><h1>Error</h1></@block>
<@block name="content">

<h1>401 - Unauthorized</h1>

<p>
You don't have privileges to access this page
</p>
<p>

</p>
<#include "error/login.ftl">

</@block>
</@extends>

skin/error/error_404.ftl

<@extends src="base.ftl">
<@block name="header"><h1>Error</h1></@block>
<@block name="content">

<h1>404 - Resource Not Found</h1>

The page you requested doesn't exists

</@block>
</@extends>

skin/error/login.ftl

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

355
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

<!-- Login Form -->
<form action="${Context.loginPath}" method="POST">
<table cellpadding="4" cellspacing="1">
 <tr>
 <td>Username:</td>
 <td><input name="username" type="text"></td>
 </tr>
 <tr>
 <td>Password:</td>
 <td><input name="password" type="password"></td>
 </tr>
 <tr align="right">
 <td colspan="2">
 <input type="submit" value="Sign In"/>
 </td>
 </tr>
 <#if Context.getProperty("failed") == "true">
 <tr align="center">
 <td colspan="2">Authentication Failed!</td>
 </tr>
 </#if>
</table>
</form>

Nuxeo Android Connector

What is Nuxeo Android Connector

Nuxeo Android Connector is a SDK to build Android Applications that communicate with a Nuxeo Server.

Nuxeo Content Automation

Nuxeo SDK for Android is based on Nuxeo Content Automation.
Basically, the Android will use Automation REST API to communicate with the Nuxeo server.

Using Automation brings several advantages :

API calls is simple and very extensible
(you can contribute new operations or chains via Nuxeo Studio or Nuxeo IDE)

Calls are efficient and easily cachable (REST + JSON Marshaling)

Thanks to Operation Chains, you can have a single call executing several operations within the same transaction

The heart of Nuxeo SDK for Android is the Nuxeo Automation Client.

The version of the Automation Client is slightly different from the standard Java Automation Client because some dependencies are not the same
(using Android SDK JSON on Android and Jackson on the standard Java).
But the API and the logic remain the same, only internal implementation is a little bit different.

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

356
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

In addition, as it will be presented later, the Nuxeo SDK for Android provides more than just the Automation Client.

Android Connector content overview

The Android Connector is a single library that provides the required infrastructure to build an Android application that uses services and content
from a Nuxeo server.

This connector includes :

a Nuxeo Automation client

caching extension to Automation Client to manage offline mode

additional services (FileUploader, FileDownloader ...)

a model to with support for offline usagemanage synchronizable Document lists

an integration layer to expose (Content Providers, BroadCastReceivers, Services ...)Nuxeo concepts the Android Way

a layout system to be able to reuse 's definition to build forms and views on AndroidNuxeo Layout

base classes for building an Android Application

Getting the Connector and the source code

Source code for Nuxeo Android Connector is available in .Nuxeo's GitHub

Sample application

Nuxeo Automation client

In the Android Connector, the Automation Client is associated to a context that references required dependencies :

server configuration and credentials

network status information

Android Context (required for Filesystem and SQL Db access)

You can access this by using :NuxeoContext

 NuxeoContext.get(Context context)

context being the Android Application Context.

If you use the base class for your application, you can directly call on the application.SimpleNuxeoApplication getNuxeoContext()

The main advantages of using the base class is that :SimpleNuxeoApplication

access to NuxeoContext is simpler

the lifecycle of NuxeoContext will be bound to your application (instead of being a static singleton)

NB : you should use one method to access the , but you should not mix them ...NuxeoContext

Once you have the you can directly access to the settings and the Automation Session :NuxeoContext

http://doc.nuxeo.com/x/GATF
https://github.com/nuxeo/nuxeo-android

 Nuxeo Enterprise Platform 5.4 Documentation

357
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

 ctx.getServerConfig().setLogin("jdoe");
 ctx.getServerConfig().setPassword("secret");
 ctx.getServerConfig().setServerBaseUrl("http://10.0.2.2:8080/nuxeo/");

 if (ctx.getNetworkStatus().isNuxeoServerReachable()) {
 Document doc = (Document)
ctx.getSession().newRequest("Document.Fetch").set("value", docRef).execute();
 }

Outside of this direct association between the Context and the Automation Client Session, the standard documentation for Nuxeo Automation
 does apply to the Automation Client embedded in Android Connector.Client

Android Connector and Caching

Because Android devices don't always have access to a reliable network connection, Nuxeo Android Connector manages local caching.
The cache data is maintained by a SQLite DB and Filesystem storage.

Several types of caches are managed :

ResponseCache : the server response is simply stored on the device so that it can be reused in case the server is unreachable.
Typical use case is caching the result of a query so that you can continue browsing the list of documents, even if the network has gone.

TransientState : because you have the ability to create or update documents from the Android device, you need to be able to store
your changes locally
Typical use case is that you update a document and you want to keep this local change until your are able to send it back to the server
and get a fresh copy

DeferedUpdate : creating or updating a document also means calling an operation on the server side. The create/update operation will
be stored locally and replayed when the server is available.

ResponseCache

Automation Responses can be cached.
This basically means that the JSON response sent by the Nuxeo server is stored on the local filesystem and is associated with a DB record that
maintains metadata.
The extra meta-data in the SQL DB are used to be able to match a response with the corresponding request. The DB also contains the
informations to be able to reconstruct the request, so that the cache can be refreshed.

Compared to the "standard Automation Client API", when calling a Operation you can specify expected caching behavior.

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

358
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

 DocRef docRef = new PathRef("/");

 // Call with no CacheBehavior => default to CacheBehavior.STORE
 session.newRequest("Document.GetChildren").setInput(docRef).execute();

 // Call with CacheBehavior.STORE => will cache the response

session.newRequest("Document.GetChildren").setInput(docRef).execute(CacheBehavior.STOR
E);

 // Force refresh (try to fetch from server, store to cache)

session.newRequest("Document.GetChildren").setInput(docRef).execute(CacheBehavior.FORC
E_REFRESH);

TransientState

This cache stores Document deltaset (changes done in the Document).
This includes newly created Documents that do only exist in local.

The TransientState manager is mainly updated via Events (is a).AndroidTransientStateManager BroadcastReceiver

This design helps making the TransientState management as transparent as possible.
When a Document is created or update in local, a event is sent : TransientStateManager stores the delta
When the create/update operation has been processed by the server a new event will be fired and the TransientStateManager will delete the local
storage.

To reflect the synchronization status, the Document has a that returns an Enum :getStatusFlag()

"new" means that the Document only exists in local for now
"updated" means that the Document hold local modifications that have not yet been pushed to the server
"" means that the Document is synchrozed with the server
"conflict" means that the push on the server resulted in a conflict

TransientStateManager exposes an API to automatically fetch and merge deltasets on a List of Documents, but in most of the cases this is
already encapsulated by the DocumentProviders.

Defered Updates

This caches keeps track of the Create/Update/Delete operations that are pending and should be sent to the server when network is accessible.
Each cached operation is indirectly linked to a set of TransientState.
In addition, pending Request can have dependencies :

dependencies between update requests
dependencies with pending Uploads

Defered Updates system is exposed via service interface.DeferredUpdateManager
This service can be used to send an update request :

String execDeferredUpdate(OperationRequest request, AsyncCallback<Object> cb,
OperationType opType, boolean exeuteNow);

Android Connector additional Services

In addition of the Automation Client, Android Connector exposes several services :

Built in services

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

359
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

TransientStateManager

Manages local storage of locally modified Documents.

DeferredUpdateManager

Manages storage of updates operations until the network becomes available again.

ResponseCacheManager

Manage Storage of server responses.

FileDownloader

This service is also very tied to the caching system.
It manages download in a ThreadPool and caches the result on the Filesystem.

FileUploader

This service works side by side with the .DeferredUpdateManager

For Document create/update operations, the Blobs are not directly sent inside the Create/Update request.
Basically, the Blobs are uploaded via the service and the Create/Update operation will contain a reference to the upload batch.FileUploader
In order for this to work correctly the DeferredUpdate will have a dependency on the required uploads.

NuxeoLayoutService

Accessing the services

Services are accessible via simple getters on the and objects.NuxeoContext AndroidAutomationClient
You can also use the adapter system on the Session object to have direct access to all the services.

FileUploader uploader = getNuxeoSession().getAdapter(FileUploader.class);

FileDownloader downloader = getNuxeoSession().getAdapter(FileDownloader.class);

DeferredUpdateManager deferredUpdateManager =
getNuxeoSession().getAdapter(DeferredUpdateManager.class);

TransientStateManager transientStateManager =
getNuxeoSession().getAdapter(TransientStateManager.class);

ResponseCacheManager responseCacheManager =
getNuxeoSession().getAdapter(ResponseCacheManager.class);

NuxeoLayoutService nuxeoLayoutService =
getNuxeoSession().getAdapter(NuxeoLayoutService.class);

DocumentMessageService documentMessageService =
getNuxeoSession().getAdapter(DocumentMessageService.class);

DocumentProvider documentProvider =
getNuxeoSession().getAdapter(DocumentProvider.class);

DocumentProviders in Android Connector

DocumentProvider and LazyDocumentsList

The DocumentProvider system is basically an extension of the PageProvider notion that exists on the Nuxeo server side.

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

360
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

The service allows to access a list of documents by it's name.DocumentProvider

 LazyUpdatableDocumentsList documentsList = docProvider.getDocumentsList("MyList",
getNuxeoSession());

This list of documents will be fetched using an Automation Operation.
This means the content of the document list can be propulated from :

children of a Folder
content of a InBox (CMF use case)
the Clipboad or the Worklist
the result of a NXQL query
...

When returning lists of documents, the DocumentProvider does not provide a simple type.Documents
It returns a type that provides additional features :LazyDocumentsList

list will be automatically fetched asynchronously page by page as needed

the list will be cached locally to be available offline

you can add documents to the list (even in offline mode)

you can edit documents to the list (even in offline mode)

list definition can be dynamically saved so that you can restore it later

The can be accessed like any service :DocumentProvider

DocumentProvider docProvider = getNuxeoSession().getAdapter(DocumentProvider.class);

DocumentProvider gives access to named list of documents. These lists implement the interface and if they supportLazyDocumentsList
create/update operation they also implement .LazyUpdatableDocumentsList

You can define your own and register them to the :LazyDocumentsList DocumentProvider

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

361
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

// register a query
String query = "select * from Document where ecm:mixinType != \"HiddenInNavigation\"
AND ecm:isCheckedInVersion = 0 AND ecm:currentLifeCycleState != \"deleted\" order by
dc:modified DESC";
docProvider.registerNamedProvider(getNuxeoSession(),"Simple select", query , 10,
false, false, null);

// register an operation
// create the fetch operation
OperationRequest getWorklistOperation =
getNuxeoSession().newRequest("Seam.FetchFromWorklist");
// define what properties are needed
getWorklistOperation.setHeader("X-NXDocumentProperties", "common,dublincore");
// register provider from OperationRequest
docProvider.registerNamedProvider("Worklist", getWorklistOperation , null, false,
false, null);

// register a documentList
String query2 = "SELECT * FROM Document WHERE dc:contributors = ?";
LazyUpdatableDocumentsList docList = new
LazyUpdatableDocumentsListImpl(getNuxeoSession(), query2, new
String[]{"Administrator"}, null, null, 10);
docList.setName("My Documents");
docProvider.registerNamedProvider(docList, false);

When registering a new provider, you can ask for it to be persisted in the local db. The list definition will be saved to the db and the content will be
cached.
This allows the end used to define custom lists of documents that will benefit from cache and offline support.

When you need to access one of the named lists you can simply ask the :DocumentProvider

LazyUpdatableDocumentsList documentsList = docProvider.getDocumentsList(providerName,
getNuxeoSession());

The Nuxeo Connector provides and Android so that you can directly bind the document lists to an Android .ListAdapter ListView
(this part will be explained in more details in the next section).

Create and Update operations on LazyDocumentsList

You can add or edit documents :

// add a document
Document newDocument = ...
documentsList.createDocument(newDocument);

// update a document
Document doc2Update = documentsList.getDocument(idx);
doc2Update.set("dc:title", "Modified!");
documentsList.updateDocument(Update);

The actual implementation on the server side of the create/update operations will depend on your business logic.

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

362
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

Typically, if you list represent the content of a folder or a list of documents matching a topic, you will have different create/update/delete
implementations.

List nature Create operation Update operation Delete operation

Folder contents Create document in Folder Update document Delete document

query on topic Create document in personnal
workspace and set topic
meta-data

Update document unset target meta-data

inbox content Get next document from service
mailbox and assign to me

Update document distribute to next actor of the
workflow

The default implementation create the document with a path that can be configured and does a simple update of the document.

protected OperationRequest buildUpdateOperation(Session session, Document
updatedDocument) {
 OperationRequest updateOperation =
session.newRequest(DocumentService.UpdateDocument).setInput(updatedDocument);
 updateOperation.set("properties",
updatedDocument.getDirtyPropertiesAsPropertiesString());
 updateOperation.set("save", true);
 updateOperation.set("changeToken", updatedDocument.getChangeToken()); // prevent
dirty updates !
 // add dependency if needed
 markDependencies(updateOperation, updatedDocument);
 return updateOperation;
}

protected OperationRequest buildCreateOperation(Session session, Document newDocument)
{
 PathRef parent = new PathRef(newDocument.getParentPath());
 OperationRequest createOperation =
session.newRequest(DocumentService.CreateDocument).setInput(parent);
 createOperation.set("type", newDocument.getType());
 createOperation.set("properties",
newDocument.getDirtyPropertiesAsPropertiesString());
 if (newDocument.getName()!=null) {
 createOperation.set("name", newDocument.getName());
 }
 // add dependency if needed
 markDependencies(createOperation, newDocument);
 return createOperation;
}

You can use your own operation definitions by inehit from and simple implement the 2 methods AbstractLazyUpdatebleDocumentsList bu
 and .ildUpdateOperation buildCreateOperation

Android SDK Integration

The Nuxeo Android SDK tries, as much as possible, to expose Nuxeo services in a natural Android way.
The idea is that the SDK should it's features via standard Android concepts and patterns.

DocumentsListAdapter

DocumentsListAdapter is a dedicated implementation of the standard Android interface .ListAdapter
It allows to bind an Android to a .ListView LazyDocumentsList

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

363
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

// get the document list
LazyDocumentsList documentsList = getDocumentList(data);

// define the mapping between document attributes and widgets
Map<Integer, String> mapping = new HashMap<Integer,String>();
mapping.put(R.id.title_entry, "dc:title");
mapping.put(R.id.status_entry, "status");
mapping.put(R.id.iconView, "iconUri");
mapping.put(R.id.description, "dc:description");
mapping.put(R.id.id_entry, "uuid");

// create the adapter passing it the list, the mapping and the layout
DocumentsListAdapter adapter = new DocumentsListAdapter(this, documentsList,
R.layout.list_item, mapping, R.layout.list_item_loading);

// bind to the ListView
listView.setAdapter(adapter);

Starting from there you can use your Nuxeo doculent list like any simple list.
The documents list will be fetched and refreshed automaticaly as needed.

If scrolling goes faster than fetching from the server, a waiting item will be displayed with a specific layout (inR.layout.list_item_loading
the above exemple).

ContentProvider

Nuxeo's SDK try to expose as much as possible of the content via the Android system.ContentProvider

The provider authority is and depending on the requested content, the call will be directed to a nuxeo service.nuxeo URI
Basically :

URI pattern Target Content

content://nuxeo/documents returns all documents of the repository via an Android Cursor

content://nuxeo/documents/<UUID> access to document with given UUID

content://nuxeo/<providername> Android cursor documents in the given provider

content://nuxeo/<providername>/UUID access to document with UUID in the given provider

content://nuxeo/icons/<subPath> download and cache icon of the given sub path

content://nuxeo/blobs/<UUID> download and cache the main blob of the doc with the given UUID

content://nuxeo/blobs/<UUID>/<idx> download and cache the blob <idx> of the doc with the given UUID

content://nuxeo/blobs/<UUID>/<subPath> download and cache the blob contained in the field <subpath> of the
doc with the given UUID

This ContentProvider allows :

to easily bind Nuxeo resources (like images) to Androids Views (like an)ImageView
to easily use Nuxeo content from an external application

Interprocess marshaling is handled by the ContentProvider system
you don't need to depend on Nuxeo API

Event system

Android built-in event system is used by the SDK to notify for :

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

364
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

Network status changes: when the Nuxeo server becomes reachable or when offline mode is required

Configuration changes : when the settings of the NuxeoAutomationClient have been changed

Document events : A notification is sent for Create/Update/Delete operations on (with 3 states Local, Server,LazyDocumentsLists
Failed)

Service binding

TBD

Nuxeo Layout in Android

Nuxeo Android Connector SDK allows fetch the Documents layout definition from the server.
This allows to reuse on the Android side the layouts that are present by default in Nuxeo, or the custom ones that can be done via Nuxeo Studio.

Basically, the Layout definitions (as well as Widgets definitions and some vocabularies) are exported in JSON by the Nuxeo server.
On the Android side this definition is cached and used to build an Android View from it.

This implies to bind Nuxeo widgets to Android native Widgets.
The current SDK version provides support for basic fields (Text, TextArea, Date, File, SelectOne, SelectMany).

// get a ScrollView that will contains the Form generated from the Nuxeo Layout
layoutContainer = (ScrollView) findViewById(R.id.layoutContainer);

// get the service
NuxeoLayoutService nls = getNuxeoSession().getAdapter(NuxeoLayoutService.class);

// get the layout definition for the current document.
NuxeoLayout layout = nls.getLayout(this, getCurrentDocument(), layoutContainer,
getMode());

LayoutMode argument can be create/edit/view.

When you wan to change back the modifications to the document :

Document doc = getCurrentDocument();
layout.applyChanges(doc);

Because some widgets can start new , the activity responsible to handle the display of the form will need to implment some additionalActivity
callback.

@Override
protected void onActivityResult(int requestCode, int resultCode, Intent data) {
 layout.onActivityResult(requestCode, resultCode, data);
 super.onActivityResult(requestCode, resultCode, data);
}

See sample code and base classes for more details.

SDK provided base classes

The SDK tries to provide as much as possible base classes that you can rely on to avoid having to do too much plumbing.

Class Name Type Description

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

365
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

SimpleNuxeoApplication Application Integrate with applicationNuxeoContext
context

BaseNuxeoActivity Activity Provide skelton for async call to the Nuxeo
server on activity initialization

AbstractNetworkSettingsActivity Activity Skeleton for managing Nuxeo network and
caching settings

AbstractNuxeoSettingsActivity Activity Skeleton for managing Nuxeo server settings

BaseSampleListActivity Activity Manage display of a list of documents

Nuxeo Flex Connector

What is Nuxeo Flex Connector

The Flex Connector is an AMF (Action Message Format) bridge that allows Flash clients to use services exposed by the Nuxeo platform.

This means you can use the Flex Connector to have your Flex application:

Read, search, create, update documents stored in Nuxeo,
Manage workflows and tasks,
Use conversion services,
Manage users and send notifications,
...

How does it work

The Nuxeo Flex Connector is based on which is a free, open source (LGPL) alternative to Adobe® LiveCycle® (Flex™ 2+)Granite Data Services
Data Services. GraniteDS provides a full support for AMF3/Remote Object for EJB3/Seam/Spring/Guice/Pojo technologies.

Nuxeo uses Granite to expose Seam Beans and Nuxeo Runtime services as remotable services to Flex clients.

Support for Nuxeo Automation services will be added in the next release (2.0) of the connector.

For security reasons, all Nuxeo services and Seam beans are not exposed by default and you can use to defineNuxeo extension point system
what services you want to expose to the Flex clients.
In addition, since ActionScript and Java are different languages, the connector does some type mapping and you have the possibility to configure
your own specific mapping. See for more details.AMF Mapping in Nuxeo

Getting the Flex Connector

You can use (and) or to install the Nuxeo Flex Connector and associatedNuxeo Marketplace Connector Samples Nuxeo Update Center
samples.

You can also get the JARs from our .Maven repository

Since the Nuxeo Flex Connector is LGPL and fully open source as the rest of the Nuxeo Platform, you can also check out the sources and built it.
See section.Build and deploy Nuxeo Flex Connect

http://doc.nuxeo.com/x/GATF
http://www.graniteds.org/
http://marketplace.nuxeo.com
https://connect.nuxeo.com/nuxeo/site/marketplace/package/flex-connector
https://connect.nuxeo.com/nuxeo/site/marketplace/package/flex-samples
https://maven.nuxeo.org/nexus/index.html#nexus-search;quick~nuxeo-platform-ui-flex

 Nuxeo Enterprise Platform 5.4 Documentation

366
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

Using the Flex Connector

The Nuxeo Flex Connector comes with a set of samples to show you how to use the Nuxeo services from a Flex client. We also provide a set of
reusable Flex components and a build system integrated with Maven.

Read more about Using Flex Connector

AMF Mapping in Nuxeo

Services and AMF

GraniteDS allows to expose different types of services, and you can use the GraniteDS configuration files to do so.
However, the Nuxeo Flex Connector contains a dedicated Component that is used to configure GraniteDS via the extension point system so that
you don't have to update the GraniteDS configuration file.

You can use to get more details about:Nuxeo Platform Explorer

the ,NxGraniteConfigService component
the .services Extension Point

Using Nuxeo Runtime services

All the features of the Nuxeo platform are exposed as Services. You can access these services via the Flex Connector. For that you need to
declare what services need to be available via AMF remoting.

Here is a simple example for exposing the SchemaManager service as a remotable:

<component name="org.nuxeo.ecm.platform.ui.granite.config.facetExplorer">
 <extension
target="org.nuxeo.ecm.platform.ui.granite.config.NxGraniteConfigService"
point="services">
 <runtime id="schemaManager" class="org.nuxeo.ecm.core.schema.SchemaManager" />
 </extension>
</component>

class defines the service interface to be exposed,
id defines the name that will be used on the client side.

On the client side, you will use the services-config.xml to declare the remote service:

<services>
 <service
 id="schemaManager"
 class="flex.messaging.services.RemotingService"
 messageTypes="flex.messaging.messages.RemotingMessage">
 <destination id="schemaManager">
 <channels>
 <channel ref="nx-amf"/>
 </channels>
 <properties>
 <factory>nxruntimeFactory</factory>
 <class>org.nuxeo.ecm.core.schema.SchemaManager</class>
 </properties>
 </destination>
 </service>
</services>

Using Seam beans

Although you can access to Nuxeo Runtime services, it make sense to use Seam beans:

http://doc.nuxeo.com/x/GATF
http://explorer.nuxeo.org/nuxeo/site/distribution/Flex-Connector-1.1
http://explorer.nuxeo.org/nuxeo/site/distribution/Flex-Connector-1.1/viewComponent/org.nuxeo.ecm.platform.ui.granite.config.NxGraniteConfigService
http://explorer.nuxeo.org/nuxeo/site/distribution/Flex-Connector-1.1/viewExtensionPoint/org.nuxeo.ecm.platform.ui.granite.config.NxGraniteConfigService--services

 Nuxeo Enterprise Platform 5.4 Documentation

367
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

1.
2.

because you may want to manage some states on the server side: Seam Context management is easy;
because you want Nuxeo to expose custom services that contains logic specific for your UI (having Seam beans as Controlers for your
Flex UI);
because you want to reuse existing Nuxeo Seam Beans.

In order to make a Seam Bean accessible remotely from the Flex side you need to:

declare the bean in the services extension point of ,NxGraniteConfigService
annotate the methods you want to call with Seam @WebRemote annotation.

Here is a simple example for exposing the 2 Seam beans as a remotable:

<extension point="services"
target="org.nuxeo.ecm.platform.ui.granite.config.NxGraniteConfigService">
 <seam id="flexDocumentManager" source="flexRepositoryService"/>
 <seam id="flexActionService"/>
</extension>

id is the name of the service on the client side;
source is the name of the Seam Component (defaults to id if unset).

On the client side, you will use the services-config.xml to declare the remote service:

 <service
 id="flexDocumentManager"
 class="flex.messaging.services.RemotingService"
 messageTypes="flex.messaging.messages.RemotingMessage">
 <destination id="flexDocumentManager">
 <channels>
 <channel ref="nx-amf"/>
 </channels>
 <properties>
 <factory>seamFactory</factory>
 <source>flexRepositoryService</source>
 </properties>
 </destination>
 </service>
 <service
 id="flexActionService"
 class="flex.messaging.services.RemotingService"
 messageTypes="flex.messaging.messages.RemotingMessage">
 <destination id="flexActionService">
 <channels>
 <channel ref="nx-amf"/>
 </channels>
 <properties>
 <factory>seamFactory</factory>
 <source>flexActionService</source>
 </properties>
 </destination>
 </service>
 </services>

Type Mapping and Marshaling

DocumenModel vs FlexDocumentModel

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

368
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

GraniteDS provides a simple and transparent mapping between Java Object and ActionScript objects. But this basic mapping only transfers the
data and uses a simple one to one property mapping.

In some cases, this is not enough because you need a better control on the Marshaling.
For accessing Nuxeo services (Seam Bean or Runtime Service), we have this requirement for transmitting Documents () overDocumentModel
the wire between Flex and Java sides:

because a is a big object;DocumentModel
because you want to be able to update the Document on the client side: so you need methods;
because you want to be able to detect on the server side what part of the Document have been changed;
because you don't want Blobs to be sent as part of the Documents.

For this we have used GraniteDS and to provide a mapping between the Java and anExternalizer InvocationListener DocumentModel
ActionScript .FlexDocumentModel
We also added support so that are serialized as Action Scripts strings.DocumentRef

IdRef("0f9d03ed-ba00-4c54-b5b2-2f6b4be4a239") =>
"idRef:0f9d03ed-ba00-4c54-b5b2-2f6b4be4a239"
PathRef("/default-domain/workspaces/ws1") =>
"pathRef:/default-domain/workspaces/ws1"

Thanks to this mapping you can very easily call the existing Nuxeo services on most of the methods.

So for example:

DocumentModel methodA(DocumentRef docRef);

DocumentRef methodB(DocumentModel doc);

function methodA(docRef:String):FlexDocumentModel;

function methodB(doc:FlexDocumentModel):String;

Advanced Marshaling

If for some custom objects you need more than what is provided by default in the Nuxeo Flex Connector, you can leverage GraniteDS to define
some custom Marshaling.

Externalizer
If you want to use Nuxeo API, you will need a mapping between Java Object and Action Script Object. GraniteDS provides a pluggable
externalizer for your different Object. It aims to (de)serialize the different fields of your objects. For more information, see GraniteDS

.documentation

InvocationListener
You might need more control on mapping. For instance, the object in Nuxeo is rather complicated. So we have a DocumentModel Flex

 object which is a simplified version of . The mapping between those two Java objects is done in the DocumentModel DocumentModel N
. It listens to each service invocation method call. Then we can switch from to uxeoInvocationListener FlexDocumentModel Docu

 or the other way around. For more information on , see .mentModel InvocationListener GraniteDS documentation

Build and deploy Nuxeo Flex Connect

Getting the source code

Java signatures

ActionScript signatures

http://doc.nuxeo.com/x/GATF
http://www.graniteds.org/confluence/display/DOC/2.+Externalizers
http://www.graniteds.org/confluence/display/DOC/2.+Externalizers
http://www.graniteds.org/confluence/display/DOC/8.+Miscellaneous+Options

 Nuxeo Enterprise Platform 5.4 Documentation

369
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

The sources are hosted in our Mercurial repository.

To get a copy:

hg clone http://hg.nuxeo.org/addons/nuxeo-platform-flex
cd nuxeo-platform-flex
hg update 1.1-5.4.2

NB: This example assumes you want to use version 1.1 of the Flex Connector for Nuxeo Platform 5.4.2

This source tree contains:

sources of the Flex Connector,
sources of the SWC reusable components,
sources of the Samples (client side and server side),
distribution of Nuxeo CAP + Flex Connector + Samples.

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

370
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

|-- nuxeo-flex-components (SWC for FlexDocumentModel and Login)
|-- nuxeo-flex-components-extra (SWC for additional UI components)
|-- nuxeo-flex-connector (Nuxeo GraniteDS plugin : the real server side
connector)
|-- nuxeo-flex-distribution (build runnable server : Nuxeo CAP + Connector +
Samples)
`-- samples (samples)
 |-- actions
 | |-- client
 | `-- server
 |-- browser
 | |-- client
 | `-- server
 |-- documentAPI
 | |-- client
 | `-- server
 |-- document-browser
 | |-- client
 | `-- server
 |-- facet-explorer
 | |-- client
 | `-- server
 |-- flex-login
 | |-- client
 | `-- server
 |-- samples-container-tab (server side plugin that is used to have the samples
displayed in Nuxeo)
 |-- simple
 | |-- client
 | `-- server
 |-- state-management
 | |-- client-edit
 | |-- client-save
 | |-- client-select
 | `-- server
 |-- tree
 | |-- client
 | `-- server
 |-- users
 | |-- client
 | `-- server
 `-- vocabularies
 |-- client
 `-- server

Building and deploying

As all other builds in Nuxeo, this build is driven by Maven.

Building and deploying the Flex Connector

mvn clean install -Pconnector

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

371
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

1.
2.
3.
4.

The result of the build is a nuxeo-flex-connector JAR that should be copied in the or directory of your Nuxeo server.bundles plugins

Building and deploying the SWC and the Samples

mvn clean install -Psamples

The result of the build is a set of JARs that should be copied in the or directory of your Nuxeo server.bundles plugins

Building the distribution

mvn clean install -Pall

This command runs the steps below:

download and unzip a Nuxeo CAP server,
download the needed GraniteDS libraries,
build the JAR, SWC and SWF files,
put these files and the GraniteDS libraries in the downloaded Nuxeo CAP server.

The result is a prebuilt Nuxeo CAP server containing the Flex Connector and the samples. To run it:

for Posix users:

cd target/stage/nuxeo-flex-tomcat
chmod +x bin/nuxeoctl
bin/nuxeoctl console

for MS users:

cd target\stage\nuxeo-flex-tomcat
bin/nuxeoctl.bat

Using Flex Connector

Nuxeo Flex sample code

Content

The Flex Connector comes with a set of sample codes that can be used to understand:

how to use Nuxeo services,
how to use Documents provided by Nuxeo.

For that we provide 11 samples:

Basic remoting samples Shows how to call remote services and how Java Objects and
DocumentModels Marshaling is handled.

Document API browser sample Shows how to use the repository API to browse the content and
display documents properties.

DocumentAPI sample Shows how to modify a document.

The README.txt contains more informations about the build.

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

372
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

Actions sample Shows how to use Nuxeo Action service to fetch from server what
actions are available in a given context (Document + user).

Nuxeo Runtime sample Shows how to call directly a Nuxeo Runtime Service.

Flex Login sample Shows how you can provide a Flex UI for Login/Logout in Nuxeo.

Vocabularies sample Shows how to use Nuxeo's vocabularies from Flex.

User management sample Searches and modifies a user.

Tree sample Simple demo of the provided Navigation Tree SWC component.

Document Explorer Sample application to show how to build an Explorer using Nuxeo
service and Nuxeo reusable SWC components.

Document API and State Management This sample shows how you can manage state on the server side to
share some data between several SWF applications.

When deploying the samples on a Nuxeo instance you can access the samples by 2 ways:

use the "Flex Samples" tab from within the main UI,
use the direct link .http://server/nuxeo/flexsamples/

If you don't already have a valid authentication session, using the second option will allow you to login using the Flex login screen.

As you will see, these samples are really simple examples, not a showcase. There are three main reasons for that:

we are not Flex developers;
we use bare ActionScript 3 to be sure this will work in any environments. This means:

no additional framework or components,
no specific IDE : text editor + command line build;

we wanted to keep the code as simple as possible.

Getting the samples

If you installed the Samples via the Marketplace to do your tests, and you want to go further and look at the code, you probably want to check out
.the sources

Once done you can generate the Eclipse project by running:

mvn eclipse:eclipse

Alternatively, you can also get the source JARs from our .Maven repository

Building your Flex client

Nuxeo SWC Libs

The Nuxeo Flex Connector comes with two SWC components:

nuxeo-platform-ui-flex-client-components.swc that contains the basic ActionScript "tools":
FlexDocumentModel ActionScript Object,
Login helpers,
DocumentTree simple UI component.

nuxeo-platform-ui-flex-client-components-extra.swc that contains UI components used by the Document Explorer sample.

If you want to call services that input or output DocumentModels, you will need to use the FlexDocumentModel and then use

http://doc.nuxeo.com/x/GATF
http://server/nuxeo/flexsamples/
https://maven.nuxeo.org/nexus/index.html#nexus-search;quick~nuxeo-platform-ui-flex

 Nuxeo Enterprise Platform 5.4 Documentation

373
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

1.
2.
3.
4.
5.

nuxeo-platform-ui-flex-client-components.swc as a dependency.

If you use Maven, you will get the SWC files automatically (see below), otherwise, you can download them from our .maven repository

Building with Maven

Building with Maven is clearly not the only possible solution, but since we are Java developers, this is the solution we choose

You can use the samples as examples, but basically, in your POM file you should:

add the dependency on Nuxeo SWC component:

 <dependencies>
 <dependency>
 <groupId>org.nuxeo.ecm.platform</groupId>
 <artifactId>nuxeo-platform-ui-flex-client-components</artifactId>
 <type>swc</type>
 </dependency>
 </dependencies>

declare the FlexMojo plugin to build the SWF:

 <build>
 <sourceDirectory>src/main/flex/</sourceDirectory>
 <plugins>
 <plugin>
 <groupId>org.sonatype.flexmojos</groupId>
 <artifactId>flexmojos-maven-plugin</artifactId>
 <version>3.0.0</version>
 <extensions>true</extensions>
 </plugin>
 </plugins>
 </build>

Using Flex Builder

From Flex Builder you can add Nuxeo SWC:

Click "Project" "Properies".
Choose "Flex Builder Path" in left.
Choose Library in right.
Click "Add SWC".
Choose nuxeo-platform-ui-flex-client-components-1.1-5.4.2.swc.

Once done, you can use FlexDocumentModel, Login and DocumentTree in your project.

Data Services Configuration

GraniteDS requires services configuration on both client and server sides. To avoid painful duplication of code, the connector provides two default
factories and a default channel.

Default Nuxeo factories

There are two different factories: one to get Seam component and one to get Nuxeo services. These are the two factories you should have to use
in your file.service-config.xml

http://doc.nuxeo.com/x/GATF
https://maven.nuxeo.org/nexus/index.html#nexus-search;quick~nuxeo-platform-ui-flex-client-components

 Nuxeo Enterprise Platform 5.4 Documentation

374
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

 <factories>
 <factory id="seamFactory"
class="org.nuxeo.ecm.platform.ui.granite.factory.NuxeoSeamServiceFactory" / >
 <factory id="nxRuntimeFactory"
class="org.nuxeo.ecm.platform.ui.granite.factory.NuxeoRuntimeServiceFactory" / >
 </factories >

Default channel

This is the default channel you have to use in your file.service-config.xml

 <channels >
 <channel-definition id="nx-amf" class="mx.messaging.channels.AMFChannel" >
 <endpoint
 uri="http://{server.name}:{server.port}/nuxeo/nuxeo-amf/amf"
 class="flex.messaging.endpoints.AMFEndpoint"/ >
 </channel-definition >
 <!--server.port and server.name are resolved dynamically at run time-- >
 </channels >

Service declaration

See AMF Mapping in Nuxeo

Provided Seam components

The FlexConnector comes with a set of Seam components that are dedicated to Flex remoting usage. The samples will show you how to use
them.

You can list the available Seam Bean by using .Nuxeo Platform Explorer

The main Seam components are:

Seam component name Usage Remotable

flexActionService High level interface on top of Action Service Yes

flexDocumentManager Manages an even scoped CoreSession No, Server side only

flexNavigationContext Manages server side state No, Server side only

flexRepositoryService High level interface on the CoreSession Yes (called flexDocumentManager on the
client side)

flexUserService High level interface on the UserManager Yes

flexVocabularyService High level interface for the Vocabularies Yes

Roadmap of the Flex Connector

You can keep an eye on the development by using .NXFLEX Jira

The next major release will be 2.0 and will include:

alignment on GraniteDS 2.2.x,
support for Automation Services call,
support for push.

Extending Nuxeo
Table of Contents:

http://doc.nuxeo.com/x/GATF
http://explorer.nuxeo.org/nuxeo/site/distribution/Flex-Connector-1.1/listSeamComponents
https://jira.nuxeo.org/browse/NXFLEX

 Nuxeo Enterprise Platform 5.4 Documentation

375
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

1.

2.

3.

The Nuxeo Plugin model
Adding a new UI block in Nuxeo DM
Making a connector
Integrating with JBoss AOP
Integrating with JPA

The Nuxeo Plugin model

Adding a new UI block in Nuxeo DM

Making a connector

Integrating with JBoss AOP

The following instructions will configure JBoss for weaving aspects with classes at load-time.
This have performance impacts and may not fit with your requirements.
Double check before using this mode of deployment in production.

create a JBoss AOP module

Inherits from a nuxeo parent module for getting the correct dependencies management and
add the artifact in the module dependencies.org.jboss.aop:jboss-aop:client

...

<parent>
<groupId>org.nuxeo.ecm.core</groupId>
<artifactId>nuxeo-core-parent</artifactId>
<version>5.x.x</version>
</parent>

<groupId>your-group</groupId>
<artifactId>your-module</artifactId>
...

<dependencies>
...
<dependency>
<groupId>org.jboss.aop</groupId>
<artifactId>jboss-aop</artifactId>
<classifier>client</classifier>
</dependency>
...
</dependencies>

...

Define the JBoss AOP descriptor .META-INF/jboss-aop.xml

<?xml version="1.0" encoding="UTF-8"?>

<aop xmlns="urn:jboss:aop-beans:1.0"/>

Instruct JBoss for weaving by annotating aspect classes.

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

376
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

3.

1.

2.

1.

2.

...
@InterceptorDef (scope = Scope.PER_VM)
@Bind (pointcut = "execution(*
org.nuxeo.ecm.core.security.SecurityService->checkPermission(..))")
public class CheckPermissionLogger implements Interceptor {
...

include the AOP module inside the Nuxeo EAR

Copy the JBoss AOP module jar file at the root of the and name it using the suffix.nuxeo.ear .aop

cp target/your-module-XXX.jar ???/nuxeo.ear/your-module-XXX.aop

Register the module into the template on Nuxeo 5.3.2+templates/common/OSGI-INF/templates/application.xml

<display-name>Nuxeo EP</display-name>

...
<module>
<java>your-module-XXX.aop</java>
</module>
...

configure JBoss for load-time weaving

Enable load-time weaving in AOP for the packages you're needing by editing the JBoss aspect manager configuration file
On JBoss4, it's named .server/default/deploy/jboss-aop-jdk50.deployer/META-INF/jboss-service.xml

...
<attribute name="EnableLoadtimeWeaving">true</attribute>
...
<attribute name="Include">org.nuxeo., org.jboss.test,
org.jboss.injbossaop</attribute>
<attribute name="Exclude">org.jboss.</attribute>
...

Then configure the virtual machine for enhancing classes.
On JBoss4, add the following line in .nuxeo.conf
The relative path should be replaced by an absolute one according to your installation home.

JAVA_OPTS=$JAVA_OPTS
\-javaagent:server/default/deploy/jboss-aop-jdk50.deployer/pluggable-instrumentor
.jar

At this stage, you're ready to use JBoss AOP.
If you're going in troubles, enable the weaving verbose mode in the JBoss aspect manager configuration file.

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

377
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

2.

...
<attribute name="Verbose">true</attribute>
...

Integrating with JPA

The following paragraphs explain the specific part of integrating a nuxeo service with JPA.

Let say we want to put in place a document rating service that persist information using JPA.
For this, we need these three modules :

nuxeo-samples-persistence-api
nuxeo-samples-persistence-core
nuxeo-samples-persistence-facade

The API would be something like

interface DocumentRating {
DocumentRating createRating(DocumentModel doc, String name, short maxRating);
DocumentRating getRating(DocumentModel doc, String name);
DocumentRating saveRating(DocumentMOdel doc, String name, int rating);
}

with an entity bean

...
@Entity(name="DocRating"
class DocumentRating {

 @Id
 @GeneratedValue(strategy=GenerationType.SEQUENCE, generator="DOCRATING_SEQ")
 @SequenceGenerator(name="DOCRATING_SEQ", sequenceName="DOCRATING_SEQ",
allocationSize=100)
 @Column(name = "RATING_ID", nullable = false, columnDefinition = "integer")
 private long id;

 String docUUID;

 short rating;

 short maxRating;

 long created;

 long modified;
}
...

Nuxeo's data providers should support deployment inside or outside an EJB container. The following describe what should be
achieved for each use case.

Outside an EJB container

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

378
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

In that case, the framework resolves the service as the document rating provider.
A persistence provider is lazy obtained using nuxeo persistence core services and used
for getting access to the entity manager.

class DocumentRatingProvider implements DocumentRating {

protected PersistenceProvider persistenceProvider;

public PersistenceProvider persistenceProvider() {
if (persistenceProvider == null) {
 persistenceProvider =
Framework.getService(PersistenceProviderFactory.class).newProvider("doc-rating");
 }
return persistenceProvider;
}

...
public DocumentRating saveRating(DocumentModel doc, String name, short rating) {
persistenceProvider.run(true, new RunCallback<DocumentRating>() {
public DocumentRating runWith(EntityManager em) {
 return this.saveRating(em, doc, name, rating);
 }
});
}

public DocumentRating saveRating(EntityManager em, DocumentModel doc, String name,
short rating) {
 ...
 }
...
}

A minimal configuration should named the persistence unit and specify the data source to be used.

...
 <extension target="org.nuxeo.ecm.core.persistence.PersistenceComponent"
 point="hibernate">
 <hibernateConfiguration name="doc-rating">
 <datasource>doc-rating</datasource>
 <properties>
 <property name="hibernate.hbm2ddl.auto">update</property>
 </properties>
 </hibernateConfiguration>
 </extension
...

Inside an EJB container

In that case, the framework is resolving the service using the document rating bean.
The persistence unit is initialized by the container himself, and an entity manager is
automatically injected into the bean. The entity manager is transmitted by the bean to the
core provider using a call parameter (thread safe).

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

379
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

@Stateless
@Local(DocumentRatingLocal)
@Remote(DocumentRating)
class DocumentRatingBean implements DocumentRating {

@PersistenceContext(unitName = "doc-rating")
private EntityManager em;

...

public DocumentRating saveRating(DocumentModel doc, String name, short rating) {
 DocumentRatingProvider provider =
Framework.getLocalService(DocumentRatingProvider)
 return provider.saveRating(em, doc, name, rating);
 }

...

The persistence unit should be registered in the JPA container by providing a descriptorMETA-INF/persistence.xml
in the core module.

<?xml version="1.0" encoding="UTF-8"?>
<persistence xmlns="http://java.sun.com/xml/ns/persistence"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/persistence
 http://java.sun.com/xml/ns/persistence/persistence_1_0.xsd"
 version="1.0">

 <persistence-unit name="doc-rating">
 <jta-data-source>java:/doc-rating</jta-data-source>
 <class>...DocumentRating</class>
 <properties>
 <property name="hibernate.hbm2ddl.auto" value="update" />
 </properties>
 </persistence-unit>
</persistence>

Updating your application using the Admin Center (web interface)
The Nuxeo Admin Center is a space within a Nuxeo application that provides administrative services, such as server and application usage
summary information, as well as access to upgrades, patches, the Nuxeo Marketplace, and Nuxeo Studio projects.

Nuxeo Admin Center offers access to different kinds of information about your Nuxeo instance:

System information: this section of the Admin Center provides information about the server Nuxeo is installed on, about your instance
configuration.

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

380
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

Nuxeo Connect: you can connect your Nuxeo instance with your account. This enables you to manage your SupportNuxeo Connect
tickets from your Nuxeo DM application and to connect your Nuxeo instance to the Nuxeo Marketplace.

Update Center: this section of the Admin Center provides all the updates you can need (updates and patches, Nuxeo Marketplace
packages, direct access to your Nuxeo Studio packages, local packages)

Monitoring: enables administrators to monitor some technical information and display messages to users.

Activity (available on Nuxeo DM 5.4.2): enables administrators to have information and statistics on the application.

http://doc.nuxeo.com/x/GATF
http://www.nuxeo.com/en/services/support2

 Nuxeo Enterprise Platform 5.4 Documentation

381
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

OAuth/OpenSocial (available on Nuxeo DM 5.4.2): enables administrators to manage the authentication with other applications using
OAuth protocol.

Users & Groups (available on Nuxeo DM 5.4.2): enables administrators to create, edit, delete users and groups of users.

Vocabularies (available on Nuxeo DM 5.4.2): enables administrators to customize and adapt the values displayed in lists in the
application.

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

382
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

Dashboards (available on Nuxeo DM 5.4.2): enables administrators to define the dashboards displayed by default to users and to add
new gadgets.

Themes (available on Nuxeo DM 5.4.2): gives administrators access to Nuxeo Themes, that enables them to create new themes for the
application.

Register your Nuxeo instance

Registering your Nuxeo ECM application with Nuxeo Connect will give you access to a wide range of services, such as:

the update center, so that you can easily install patches and bug fixes
a global view of your open support tickets
Nuxeo Marketplace, the app store for Nuxeo community. This gives you an easy and powerful way to add features and plugins to your
Nuxeo application.
an automatic update of your Nuxeo Studio configuration, including hot redeploy

The registration process only copies a file on your file system. This enables the Nuxeo Connect portal to identify the instance among all the
registered instances. You can register multiple instances.

Here are the different ways to register your Nuxeo instance:
How To Register

Create your Nuxeo Connect account
Register online
Register offline

Re-register your Nuxeo instance

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

383
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

1.
2.
3.
4.

1.

2.
3.
4.
5.
6.

7.

1.

2.
3.
4.

How To Register

To be able to register, you need to have a .DMDOC:Nuxeo Connect account

Registration can be done online or offline. If your server cannot connect to the internet, follow the . Otherwise,DMDOC:offline registration steps
follow the .DMDOC:online registration steps

For development instances on which you may need to remove your data, you may need to . In that case, useDMDOC:re-register your instance
offline registration form.

Create your Nuxeo Connect account

If you already have an account on Nuxeo Connect, either because you are a Nuxeo customer, or because you created a trial, you can continue to
the next step. If not, follow those steps to get credentials to Nuxeo Connect portal.

Go to the .Connect trial registration form
Fill the form. Provide a valid email address or else registration will not be completed.
Confirm registration by clicking on the link sent to the email address in the previous step.
If it is not already done, download last published version of .Nuxeo DM

Register online

Start your Nuxeo instance and connect with Administrator/Administrator (or your administrator password if it is already
customized).
Click on the link, on the top of the user interface to go to the Administration Center.Nuxeo Admin Center
Click on the link, on the left side.Nuxeo Connect
Authenticate to Nuxeo Connect portal by giving your credentials.
Choose which application is concerned among the ones your recorded in Nuxeo Connect.
Give a description of your registration, like "Jolene's instance" and indicate if it is a development, qualification or production
instance (just for our information).
The registration process will end automatically, you can now browse the various tabs of the Update Center area, and set up
plugins from the , see the .Nuxeo Marketplace how to

Register offline

Offline registration can be used for first registration when the server doesn't connect to the internet. It is also used for registration.

To register your instance for the first time:
Start your Nuxeo instance and connect with Administrator/Administrator (or your administrator password if it is already
customized).
Click on the link, on the top of the user interface.Nuxeo Admin Center
Click on the link, on the left side.Nuxeo Connect
On the right part of the registration screen, get the called CTID (ex:instance technical identifier Mac OS

) and store it in a file so that you can connect toX-EbMKUsirT9WQszM5mDkaKAp=-BhnJsMDaabDHAQ0A300d6Q==
internet (or just copy it if the machine from which you have access to the Admin Center has internet).

http://doc.nuxeo.com/x/GATF
https://connect.nuxeo.com/nuxeo/site/connect/trial/form
http://www.nuxeo.com/en/downloads/download-dm-form
https://connect.nuxeo.com/nuxeo/site/marketplace

 Nuxeo Enterprise Platform 5.4 Documentation

384
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

5.

6.

7.

8.

Go to .Nuxeo Connect portal
You will arrive on your application page, and will see all the information regarding the application that was declared when
you created your account.
On the "Instances" area, click on the link.Add a new instance

Fill in the registration form and submit it.
The instance is registered. You are given an identifier (CLID) to validate registration from Nuxeo Admin Center.
Copy this identifier.

http://doc.nuxeo.com/x/GATF
https://connect.nuxeo.com

 Nuxeo Enterprise Platform 5.4 Documentation

385
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

9. On the Admin Center, fill in the instance description, paste the CLID from Nuxeo Connect and click on the Register this
 button.instance

The registration is approved and the registration summary is displayed.

Re-register your Nuxeo instance

If you have removed your data from your Nuxeo application, in case of a development instance, for example, you will need to register your
instance again.

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

386
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

1.
2.

3.

4.

To re-register your instance:
Log in to Nuxeo Connect.
In the associated instances, click on your Nuxeo instances link.
The page listing the associated instances for your project opens.
Copy the Identifier of the instance you want to register (Identifier is of the form
"fdedaf21-be00-412e-b0ab-f2394479d5f8--885dcf60-5a4a-46e8-a904-0123456789ab").
In Nuxeo Admin Center, paste this identifier in the CLID field, fill in the instance description and click on the Register this

 button.instance

Your instance is registered again and the registration summary is displayed.

Install a new package on your instance

This will guide you in the steps to install a new Nuxeo package from the Marketplace.

Packages can be installed or directly .from the Marketplace from the Admin Center

You need to have to be able to install packages.registered your Nuxeo instance

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

387
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

1.

2.

3.

4.

5.

To install a new package from Nuxeo Marketplace:

Go on the package you want to install in the Marketplace and click on the button on the right.Install

Choose the URL of the Nuxeo Server on which you want to set up the package (and on which you have Administrator
credentials). For instance, .localhost:8080

Your Nuxeo application opens in a new window.
Log in as an administrator, if you are not already.
You are directed in the Admin Center.
Confirm that you want to download the package.

Confirm downloading a second time, from the Admin Center of the application where you want to install the package.

Once the package has been downloaded, it has a green link.Install

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

388
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

6.

7.

Install the package by clicking on the link. Click on to confirm installation.Install Start

Once the set up is achieved, a message from the server confirms that the installation was performed correctly.

Click on the tab.local packages
The package is indicated as installed.

You may need to restart your server for the package to be fully functional. If your package is indicated as supporting
hotreload, you don't need to reboot your server.

You can uninstall the package from here if needed.

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

389
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

1.
2.
3.

4.

5.

To install a new package from Nuxeo Admin Center:

Go on the Admin Center in your application.
In the , go on the .Update Center Packages from Nuxeo Marketplace
Click on the link of the package you want to download.Download
A download in progress page is displayed while the package is being downloaded. When download is finished, the list of
Marketplace packages is displayed again and the downloaded package has a green link.Install
Install the package by clicking on the link. Click on to confirm installation.Install Start

Once the set up is achieved, a message from the server confirms that the installation was performed correctly.

Click on the tab.local packages
The package is indicated as installed.

You may need to restart your server for the package to be fully functional. If your package is indicated as supporting hot reload, you
don't need to reboot your server.

Semantic Entities Installation and Configuration

The Semantic Entities addon available on the marketplace will require some specific setup to work properly.

https://connect.nuxeo.com/nuxeo/site/marketplace/package/semantic-entities-1.0.0

Requirements

The Semantic Entities addon requires an internet access from the Nuxeo DM server to the and the http://dbpedia.org https://stanbol.dem
 web-services. The Stanbol access is optional: your are advised to setup your own Apache Stanbol instance. The access to o.nuxeo.com

 is mandatory but future versions of Apache Stanbol will make this requirement optional too.http://dbpedia.org

You can uninstall the package from here if needed.

http://doc.nuxeo.com/x/GATF
https://doc.nuxeo.com/download/attachments/8684850/Image 72.png
https://doc.nuxeo.com/download/attachments/8684850/Image 73.png
https://doc.nuxeo.com/download/attachments/8684850/Image 74.png
https://connect.nuxeo.com/nuxeo/site/marketplace/package/semantic-entities-1.0.0
http://dbpedia.org
https://stanbol.demo.nuxeo.com
https://stanbol.demo.nuxeo.com
http://dbpedia.org

 Nuxeo Enterprise Platform 5.4 Documentation

390
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

The addon further require a database server that handles concurrency at write time (e.g. using MVCC) to avoid blocking the rest of the
application while syncing and linking new entities definitions. Hence the default H2 database of Nuxeo DM will not work properly: you
should configure a proper database server such as PostgreSQL

Installing

After registering your Nuxeo DM instance to Nuxeo Connect, got to the Update Center section of the Administration Center, install
DM-5.4.0.1-HF01 and semantic-entities package. Once installed, restart the Nuxeo DM instance. Upon restart you should see a new Entities
container in the default domain.

Database configuration

To install with PostgreSQL, follow the usual instructions (in particular update the file bin/nuxeo.conf to register the templates default and
postgresql) and then:

On Nuxeo DM 5.4.0.1 only (already fixed in the future Nuxeo DM 5.4.1): configure the fulltext index for the field dc:title in the file
NUXEO_HOME/templates/postgresql/nxserver/config/default-repository-config.xml, replace the indexing block by:

 <indexing>
 <fulltext analyzer="english">
 <index name="default">
 <!-- all props implied -->
 </index>
 <index name="title">
 <field>dc:title</field>
 </index>
 <index name="description">
 <field>dc:description</field>
 </index>
 </fulltext>
 </indexing>

Drop a constraint that prevents the ACL optimizations store procedure to work concurrently (see), e.g. using psql:NXP-6038

\c nuxeo
nuxeo=# ALTER table hierarchy_read_acl DROP CONSTRAINT hierarchy_read_acl_pkey;
ALTER TABLE
nuxeo=# CREATE INDEX hierarchy_read_acl_id_idx ON hierarchy_read_acl (id);
CREATE INDEX

Apache Stanbol configuration

This addon requires an access to an external semantic engine web-service. By default the addon will use . Yourhttps://stanbol.demo.nuxeo.com
are however strongly advised to setup your own instance to avoid any issue pertaining to the confidentiality of your documents and the availability
of the demo server.

Here are the instructions to setup your own Apache Stanbol server:

Download the following jar (fise is the former name of Apache Stanbol): http://dl.dropbox.com/u/5743203/IKS/snapshots/eu.iksproject.fise
.launchers.lite-0.9-20101022.jar

Run with:

java -jar eu.iksproject.fise.launchers.lite-0.9-20101022.jar -p 9090

Configure the file at:

http://doc.nuxeo.com/x/GATF
https://jira.nuxeo.com/browse/NXP-6038
https://stanbol.demo.nuxeo.com
http://dl.dropbox.com/u/5743203/IKS/snapshots/eu.iksproject.fise.launchers.lite-0.9-20101022.jar
http://dl.dropbox.com/u/5743203/IKS/snapshots/eu.iksproject.fise.launchers.lite-0.9-20101022.jar

 Nuxeo Enterprise Platform 5.4 Documentation

391
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

NUXEO_HOME/nxserver/config/semanticentities.properties

to update the engine URL with:

org.nuxeo.ecm.platform.semanticentities.stanbolUrl=http://localhost:9090/engines/

Uninstall a package

Uninstalling a package can be done from the Admin Center only.

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

392
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

1.

2.

3.

4.

To uninstall a package:
In the Admin Center, go on the tab of the .Local packages Update Center
The list of packages that you have downloaded and possibly installed is displayed.

Click on the link of the package you want to uninstall from your application.Uninstall
A confirmation message is displayed.
Click on the button to confirm you want to uninstall the package.Start

When uninstallation is done, click on the button.Finish

The list of packages is displayed. The uninstalled package now has an link displayed.Install

Update your instance with Studio configuration

Just like you can on your Nuxeo instance from the , you can also update it with yourinstall Nuxeo Marketplace packages Admin Center
customization done in Nuxeo Studio. The tab lists all the tagged versions of your Studio projects. Studio configuration package
But it also enables you to load your current Nuxeo Studio configuration. Hot reload of your Nuxeo Studio configuration enables you to test directly

If the package doesn't support hotreload, you need to reboot the server so the unistallation is completed.

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

393
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

1.
2.
3.

your changes in your Nuxeo application, without having to restart the server or logout.

To apply your Studio changes to your application:
Make sure you have .registered your instance
In your application, go on > > .Nuxeo Admin Center Update Center Studio configuration package
Click on the button .Update project to the latest snapshot
The configuration is reloaded, which means that if you configured a new button for instance, bound to a content automation
chain, you can just test it directly.

Using Nuxeo as a service platform
Nuxeo EP exposes services in several ways:

Java services (both local and remote)

Web services (SOAP and JAX-RS)

Content Automation

This chapter will give you a brief overview of how and when to use these services.

Java Services

Nuxeo EP contains a built-in notion of service.

Services are Java interfaces exposed and implemented by a Component.

From within a Nuxeo Runtime aware context, you can access a service locally (in the same JVM) by simply looking up its interface:

RelationManager rm = Framework.getService(RelationManager.class)

Most Nuxeo Services are also exposed for remote RMI access via EJB3 remoting.

This means that, depending on the Nuxeo Runtime configuration, the service lookup can return a local object or a proxy to a remote interface.

A small number of services are not remotely exposed because they are designed for local or internal usage (high-level services using
sub-services).

Using the Java remote Service API

From the code point of view, using the java remote API is the same as using the local one.

In fact, that the reason why you can split a Nuxeo application in several parts on several JVM without changing the code.

Since modules only depends on each others via Services interfaces, it's only a service binding configuration issue for doing the split.

Theoretically, Java Services could also be invoked directly via a JNDI lookup, but actually this is not a good idea:

you will have to do JNDI lookups "by hand"

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

394
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

objects returned by service may want to do a service lookup (that will fail if Runtim is not initialized)

For that purpose, we provide a small nuxeo-client that takes care of Nuxeo Runtime initialization and also allows to initialize the JAAS context that
will be used for login and security propagation.

Using java remote API has some advantages:

you can access directly to almost all services of the platform

your code can run embeded inside Nuxeo or remotly

remoting is completly transparent

Nevertheless, this last advantage may also become your worst enemy because it may lead you to a bad separation between the client and the
server : remoting is transparent for the code, not for the performances.

An other point to take into consideration is transaction management. Because remote API is very fine grained you main want/need to do several
calls within the same transaction and in this case you will need to correctly start a remote transaction.

For more informations about declaring and using java services see the .associated section

Web Services (JAX-WS and JAX-RS)

Nuxeo EP includes 2 Web Service stacks:

one for SOAP Web service (JAX-WS) based on SUN-JAX-WS or JBossWS depending on the application server

one for REST Web service (JAX-WS) based on Jersey

Unlike the Remote Java service binding, Nuxeo EP does not provide a one to one mapping via Web Services.

There are at least 2 reasons for that:

serialization cost

granularity of the API

About the first point, Nuxeo Java service API exposes some complexe objects, the first one of them being the DocumentModel:

that can contain a lot of data

that supports lazy loaading and streaming

This DocumentModel object is used as input or output of most services (and that makes sense for an ECM platform).
Completely serializing the DocumentModel object in XML is possible (we provide helper for that), but it's clearly not very efficient since it generate
big XML objects.

For the second point, the java API is finely grained and a direct WebService mapping would imply 2 problems :

too many network calls

difficult transaction management

Given these limitations, we choose :

to expose the main features via specific Web Service

to provide a framework to easily expose dedicated WebService API

Our approach is to provide the needed tools so that you can easily expose the exacte API needed by your remote client.

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

395
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

So depending of the needs of your application, the idea is to select the needed java services and create a java wrapper that provides a high level
API and use Nuxeo framework to expose the wrapper via Web Service.

For more informations about declaring custom webservices on top of Nuxep EP, please see the sections.JAX-WS and JAX-RS binding

Content Automation

Writing a custom wrapper allows to expose a very optimized and very precise Web Service.

But on the other hand, it implies to write and deploy custom code.

In a lot of the cases, Content Automation provides an alternative to this approach with a very minimal performance overhead.

The idea is to define a simple and high level API on top of the java services : we call this Operations.

In order to avoid back and forth exchanges and costly serialization we want to chain the operations on the server side.

Using Content Automation, you can define you own Web Service API without writing code, you simply have to assemble the needed operations
(via XML or via Nuxeo Studio).

Of course, if needed, you can also contribute your own custom java operations.

Operations and Operation chains are automatically exposed via a REST API using JSON marshaling.

For more information about Content Automation, please see the chapter.Content Automation

OpenSocial

Since 5.4.2, Nuxeo EP is an OAuth service provider.

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

396
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

This means you can consume Nuxeo Automation REST Services from any OpenSocial compliant application.

Please see the for more informations.OpenSocial Page

ECM Services in Nuxeo EP

Services in Nuxeo

All ECM features in Nuxeo EP are exposed as Java Services.

These services can be local (inside the same JVM) and most of them can also be called remotely via RMI if your target Application Server
supports EJB3 remoting.

All services are defined by a Java Interface and are accessed via this interface.

Nuxeo Runtime provides a lookup system to access a Service:

 MyEcmService service = Framework.getService(MyEcmService.class);

This lookup call encapsulate the potential JNDI lookup to access a remote service if your application server and configuration require it.

If you want explicitly to access a local service you can also use:

 MyEcmService service = Framework.getLocalService(MyEcmService.class);

Inside the Seam WebLayer, most common Nuxeo Services are also wrapped as Seam components so you can directly get them via injection:

 @In(create = true, required = false)
 protected CoreSession documentManager;

 @In(create = true)
 protected RelationManager relationManager;

How to know what services are available

Nuxeo EP is a big platform and it provides a lot of different services.

You can use or to see the services included in a given distribution of Nuxeo EP.Platform Explorer WebSite platform explorer addon

Listing ECM Services

http://doc.nuxeo.com/x/GATF
http://explorer.nuxeo.org/nuxeo/site/distribution/current/listServices
https://connect.nuxeo.com/nuxeo/site/marketplace/package/PlatformExplorer-1.0.2

 Nuxeo Enterprise Platform 5.4 Documentation

397
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

Error rendering macro 'gadget' : Error rendering gadget [http://explorer.nuxeo.org/nuxeo/site/gadgets/services/services.xml]

WebServices

JAX-WS bindings

Nuxeo EP includes a JAX-WS compliant implementation to expose SOAP based webservices.

Sun JAX-WS (Metro) is used on Tomcat and JBoss 4.x distributions
JBossWS is used on JBoss 5.x distributions

As explained earlier in these pages, JAX-WS is not the preferred way to expose WebService on top of Nuxeo Platform, this is the reason why, the
default distributions don't expose a lot of SOAP based WebServices.
By default, the exposed SOAP WebServices include :

A read only access to the Document Repository and the User Manager (NuxeoRemoting)
A read only access to the Audit trail (NuxeoAudit)
the CMIS bindings

If you want to access the SOAP Webservice :

To list all the deployed endpoints
http://server:port/nuxeo/webservice/nuxeoremoting to list all the deployed endpoints (when using SUN Metro)
http://server:port/jbossws/services (when using JbossWS)

To access NuxeoRemoting WSDL : http://server:port/nuxeo/webservices/nuxeoremoting?wsdl
To access NuxeoAudit WSDL : http://server:port/nuxeo/webservices/nuxeoaudit?wsdl

The point of SOAP WebServces is not to have a 1 to 1 mapping with the Java services interfaces.
The goal is to provide a "coarse grained" high level API.

So it's easy to build new SOAP based WebServices on top of Nuxeo:

the JAX-WS infrastructure is already there
the authentication system is already in place
we provide the base class to manage Repository and security (AbstractNuxeoWebService)
we already provide JAXB objects for Documents, Security descriptors, properties ...

JAX-RS REST APIs

Since 5.2 Nuxeo EP includes a JAX-RS framework to allow easy publishing of Java classes via REST APis.

Nuxeo WebEngine provides a nice integration model so that you can very simply write Java classes that use Nuxeo Services and Documents and
expose it via REST with JSON or XML marshaling.

JAX-RS / WebEngine is the current preferred solution for exposing custom WebService on top of the platform and it is also the base of Content
Automation WebService APIs.

You can get more informations about WebEngine and JAX-RS .here

RESTLETs in Nuxeo

The Restlet framework is integrated inside Nuxeo since 5.1 and has been used to expose REST API on top of the platform.
Restlet has been replaced by JAX-RS /Jersey, but Nuxeo still embeds Restlets:

because of lot of "old" REST apis are still used and works perfectly with Restlets
because Restlets have been integrated with Seam (so you can easily mix Seam JS and Restlets calls since they share the same server
side conversation)

Unlike Content-Automation, Restlet in Nuxeo were never targeted at providing a uniform high level API, these are just helpful REST Apis exposed
for:

Seam Remoting usage
Browser helpers usage
Javascript usage

You can see what Rest APIs are exposed via Restlets by looking and the configured Restlets:

http://explorer.nuxeo.org/nuxeo/site/distribution/current/viewExtensionPoint/org.nuxeo.ecm.platform.ui.web.restAPI.service.PluggableRestletServi
ce--restlets/simple

Content Automation

Content Automation is a Nuxeo service that exposes commons actions you do on a Nuxeo application as atomic operations so that one can
assemble them to create complex business rules and logic, without writing any Java code.

http://doc.nuxeo.com/x/GATF
http://server:port/nuxeo/webservice/nuxeoremoting
http://server:port/jbossws/services
http://server:port/nuxeo/webservices/nuxeoremoting?wsdl
http://server:port/nuxeo/webservices/nuxeoaudit?wsdl
http://explorer.nuxeo.org/nuxeo/site/distribution/current/viewExtensionPoint/org.nuxeo.ecm.platform.ui.web.restAPI.service.PluggableRestletService--restlets/simple
http://explorer.nuxeo.org/nuxeo/site/distribution/current/viewExtensionPoint/org.nuxeo.ecm.platform.ui.web.restAPI.service.PluggableRestletService--restlets/simple

 Nuxeo Enterprise Platform 5.4 Documentation

398
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

In other words, content automation provides a high level API over Nuxeo services - an API made of operations that can be assembled in complex
operation chains (or macro operations). These operations are also exposed remotely through a .REST API

The main goal of automation is to enable end users to rapidly build complex business logic without writing any Java code - just by assembling the
built-in set of atomic operations into complex chains and then plugging these chains inside Nuxeo as UI actions, event handlers, REST bindings,
etc.

You can also create new atomic operations (write a Java class that defines an operation) and contribute them to the set of built-in operations. To
define an operation chain, you just need to write an XML contribution that describes the chain by listing each operation in the chain along with the
parameter values that will be used to execute the operation. If you need to define dynamic operation parameters (which value will be computed at
runtime when the operation is executed) you can use scripting (e.g. EL syntax) to fetch the actual parameter value at execution time.

Outline of this document:
What is an Operation?
What is an Operation Chain?
Working With Operations

The Operation Input
The Operation Parameters
The Operation Output
Contributing new Input/Output types (since Nuxeo 5.4.2)
Using scripting expression in operations

What is an Operation?

From an end-user point of view: an operation is an action that can be triggered by the user either directly through the User Interface, or by
responding to an event, or by a REST call to a remote server.

The operations an user can invoke usually deal with the document repository (like creating or updating documents), but they can also do some
other tasks like sending emails, converting blobs, etc.

The automation service already provides tens of frequent operations that you may need to build your business logic. More operations can be
contributed using a Nuxeo extension point. This involves of course writing the right Java code to implement the operation logic.

From a developer point of view: an operation is a Java class annotated using the right annotations and providing a one or more methods that
are doing the actual work.

For more information about how to write and contribute a new operation, see .Contributing an Operation

What is an Operation Chain?

The power of operations is that operations can be chained into a sort of macro operation that is composed of atomic operations and which
executes each operation in turn by using an operation output as the input of the next operation.

This way you can for example construct an operation chain that creates a document, then attaches a blob into the document, then publishes it
and so on. Each operation in the chain does the required step by working on the input of the previous operation and when finished outputs a
result that will be used by the next operation as its input.

This is called in Nuxeo Automation an . Operation chains give you the possibility to build complex business logic only byoperation chain
assembling atomic operations that are provided by the server. Thus, you can script your business logic using operation chains which thank to Nux

 can be done by using drag and drop (without coding anything or even writing XML extension files).eo Studio

If you are a developer and don't want to use , you can check the page to see how you can defineNuxeo Studio Contributing an Operation Chain
and contribute a new operation chain using Nuxeo extension points.

Working With Operations

In this section I will discuss more about how operations work and how they can be chained to obtain working operation chains.

We've seen that an operation works on an input object by doing something (like updating this object or creating new objects) and at the end it
outputs the operation result. When you are constructing a chain of operations, this result will be used as the input of the next operation. The last
output in the chain will be the output of the chain itself. As you noticed, an operation works on an input so you should provide an initial input to
start an operation (or an operation chain).

More, as there is an atomic operation which takes as the argument the name of the chain to execute, you can create veryExecute Operation
complex chains that can call sub-chains to execute some particular steps in the chain.

In a chain, every operation has a cause and an effect. The effect of one operation in a chain is the cause of the next event. The initial cause is the
user action (doing something with a document for example), the final effect is what the chain is assumed to do.

An atomic operation can be view as a finite operation chain with an initial cause (the action that triggered it) and having the effect of the execution

This documentation is oriented toward developers looking for extending and/or using the REST API of Content Automation. You can
also easily and graphically create new chains and actions using Nuxeo Studio.

http://doc.nuxeo.com/x/GATF
https://doc.nuxeo.com/display/Studio/Nuxeo+Online+Services
https://doc.nuxeo.com/display/Studio/Nuxeo+Online+Services
https://doc.nuxeo.com/display/Studio/Nuxeo+Online+Services
https://doc.nuxeo.com/display/Studio/Automation
https://doc.nuxeo.com/display/Studio/Automation

 Nuxeo Enterprise Platform 5.4 Documentation

399
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

1.
2.
3.

of the operation itself. This way you can chain as many cause and effects you want - you can create your ECM universe using operations.

Now, lets discuss about the bricks that compose an operation:

An operation has an input (provided by the cause)
An operation may have zero or more parameters (used to parametrize the way an operation is behaving)
An operation has an output (that can be used by the next operation in the chain as the input)

The Operation Input

The operation input can be a Document or a Blob (i.e. a file).

The input is provided by the execution context, either by getting the input from the user action (in the case of a single operation or for the first
operation in the chain), or from the output of the previous operation when executing a chain.

So we can say that an operation is working on a Document or a Blob.

There are some special operations that don't need any input. For example you may want to run a query in the repository. In this case, you don't
need an input for your query operation. Thus, operations can accept void inputs (or nothing as input). To pass a void input to an operation, just
use a null value as the input. If an operation is doesn't expect any input (i.e, void input) and an input is given, the input will be ignored.

The Operation Parameters

An operation can define parameters to be able to modify its execution at runtime depending on those parameter values.

Any parameter value can be expressed as a string. The string will be converted to the right type at runtime if possible. If not possible an exception
is thrown.

There are several types of predefined parameters:

string - any string
boolean - a boolean parameter
integer - an integer number
float - a floating point number
date - a date (in W3C format if is specified as a string)
resource - an URL to a resource
properties - a Java properties content (key=value pairs separated by new lines)
document - a Nuxeo Document (use its absolute PATH or its UID when expressing it as a string)
blob - a Nuxeo blob (the raw content of the blob in the case of a REST invocation)
documents - a list of documents
bloblist - a list of blobs
any other object that is convertible from a string - you can register new object converters trough the "adapters" extension point of the
"org.nuxeo.ecm.core.operation.OperationServiceComponent" Nuxeo Component.
an expression - this represents a MVEL expression (which is compatible with basic EL expressions) that can output dynamic values. Whe
using expressions you *must* prepend it with the _expr:_ prefix.
Example:

expr:Document['dc:title']

For the complete list of objects and functions available in an expression see .Nuxeo Studio
an expression template. This is the same as an expression but it will be interpreted as a string (by doing variable substitution). This is
very useful when you want to create expressions like this:

expr: SELECT * FROM Document WHERE dc:title LIKE @{mytitle}

where is a variable name that will be substituted with its string form.mytitle
You notice that you still need to prepend your template string with an prefix.expr:

The Operation Output

The operation output is either a Document, a Blob or void (as the input).

In some rare cases you may want your operation to not return anything (a void operation). For example your operation may send an email without
returning anything. When an operation is returning void (i.e. nothing), then a null Java object will be returned .

As said before, the output of an operation is the input of the next operation when running in a chain.

Contributing new Input/Output types (since Nuxeo 5.4.2)

http://doc.nuxeo.com/x/GATF
https://doc.nuxeo.com/display/NXDOC/Use+of+MVEL+in+Automation+Chains

 Nuxeo Enterprise Platform 5.4 Documentation

400
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

If needed, you can extend the input/output types by contributing the new marshalling logic to automation.

Marshalling and operation binding logic is selected client and server side using the JSON type name. At this stage,
we're always using the java type simple name in lowercase. This makes the operation binding logic being happy.

The logic you need to provide is as follow :

the JSON type name
the POJO class
a writing method that put data extracted from the POJO object into the JSON object
a reading method that get data from the JSON object and builds a POJO object from
a reference builder that extracts the server reference from a POJO object
a reference resolver that provides access to POJO object giving a server reference

Server and client do not share classes, so you need to provide two marshalling implementation class.

Server side, you should provide an implementation of interface.org.nuxeo.ecm.automation.server.jaxrs.io.JsonMarshaller
The implementation class is to be contributed to the automation server component using the extension point.marshallers

Client side, you should implement the interface.org.nuxeo.ecm.automation.client.jaxrs.spi.JsonMarshaller<T>
The implementation class is to be registered to the automation client marshalling framework by invoking the static method org.nuxeo.ecm.aut

.omation.client.jaxrs.spi.JsonMarshalling.addMarshaller(JsonMarshaller<?>)

Here is some snip-sets extracted from the .Automation Server Rest Test Suite

...
public class MyObject {
 String message;

 String getMessage() {

 }
 ...
}
...
public class MyObjectMarshaller extends
org.nuxeo.ecm.automation.client.jaxrs.spi.marshallers.BeanMarshaller<MyObject> {
 public MyObjectClientMarshaller() {
 super(MyObject.class);
 }
}
...
 org.nuxeo.ecm.automation.client.jaxrs.spi.JsonMarshalling.addMarshaller(new
MyObjectMarshaller());
...
public class MyObjectMarshaller extends
org.nuxeo.ecm.automation.server.jaxrs.io.marshallers.BeanMarshaller<MyObject> {
 public MyObjectClientMarshaller() {
 super(MyObject.class);
 }
}
...
 <extension target="org.nuxeo.ecm.automation.server.AutomationServer"
 point="marshallers">

 <marshaller class="org.nuxeo.ecm.automation.server.test.MyObjectServerMarshaller"
/>

 </extension>
...

http://doc.nuxeo.com/x/GATF
http://hg.nuxeo.org/nuxeo/nuxeo-features/file/8cc210a7e1a5/nuxeo-automation/nuxeo-automation-server/src/test/java/org/nuxeo/ecm/automation/server/test/RestTest.java

 Nuxeo Enterprise Platform 5.4 Documentation

401
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

Using scripting expression in operations

Operations can be parametrized using MVEL scripting expressions. For more details about scripting you can look at Use of MVEL in Automation
.Chains

Operations Index
User Interface

Add Error Message
Add Info Message
Change Tab
Clear Clipboard
Clear Worklist
Download file
Navigate to Document
Push to Clipboard
Push to Seam Context
Push to Worklist
Refresh
Show Create Document Page

Files
Attach File
Export to File
Get Document File
Get Document Files
HTTP Post
Remove File
Set File Name
Zip

Document
Check In
Check Out
Copy
Create
Delete
Filter List
Follow Life Cycle Transition
Get Child
Get Children
Get Parent
Lock
Move
Multi-Publish
Publish Document
Remove ACL
Remove Property
Reset
Save
Set ACL
Set File
Snapshot Version
Unlock
Update Properties
Update Property

Fetch
Context Document
Document
Fetch By Property
File From URL
PageProvider
Query
UI Clipboard
UI Current Document
UI Current Domain
UI Current Workspace
UI Document From Seam
UI Selected documents
UI Worklist

Conversion
Convert To PDF
Get image view
Render Document
Render Document Feed

http://doc.nuxeo.com/x/GATF
https://doc.nuxeo.com/display/NXDOC/Use+of+MVEL+in+Automation+Chains
https://doc.nuxeo.com/display/NXDOC/Use+of+MVEL+in+Automation+Chains

 Nuxeo Enterprise Platform 5.4 Documentation

402
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

Resize a picture
Services

Create Relation
Create task
Get Linked Documents
Get user tasks
Log Event In Audit
Query Audit Service

Users & Groups
Get Principal Emails
Get User Setting
Get User Settings
Get Users and Groups
Login As
Logout

Push & Pop
Pop Document
Pop Document List
Pop File
Pop File List
Pull Document
Pull Document List
Pull File
Pull File List
Push Document
Push Document List
Push File
Push File List

Execution Context
Restore Document Input
Restore Documents Input
Restore File Input
Restore Files Input
Set Context Variable
Set Context Variable From Input

Execution Flow
Run Document Chain
Run Operation
Save Session

Scripting
Run Input Script
Run Script

Notification
Send E-Mail
Send Event

User Interface

Add Error Message

Add a message to be displayed in case the chain execution fails. This is a void operation - the input will be returned back as output General
Information

Category: User Interface
 Seam.AddErrorMessageOperation Id:

Parameters

Name Type Required Default Value

message string true

Signature

Inputs: void
 voidOutputs:

Add Info Message

Add a message to be displayed after the chain is successfuly executed. This is a void operation - the input will be returned back as output Genera
l Information

Category: User Interface

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

403
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

 Seam.AddInfoMessageOperation Id:
Parameters

Name Type Required Default Value

message string true

Signature

Inputs: void
 voidOutputs:

Change Tab

Change the selected tab for the current document. Preserve the current input. General Information

Category: User Interface
 Seam.ChangeTabOperation Id:

Parameters

Name Type Required Default Value

tab string true

Signature

Inputs: void
 voidOutputs:

Clear Clipboard

Clear the clipboard content. General Information

Category: User Interface
 Seam.ClearClipboardOperation Id:

Parameters

Name Type Required Default Value

Signature

Inputs: void
 voidOutputs:

Clear Worklist

Clear the worklist content. General Information

Category: User Interface
 Seam.ClearWorklistOperation Id:

Parameters

Name Type Required Default Value

Signature

Inputs: void
 voidOutputs:

Download file

Download a file General Information

Category: User Interface
 Seam.DownloadFileOperation Id:

Parameters

Name Type Required Default Value

Signature

Inputs: blob
 voidOutputs:

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

404
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

Navigate to Document

Navigate to the input document. The outcome of the UI action will be stored in the operation chain context as the 'Outcome' variable. Returns
back the document. General Information

Category: User Interface
 Seam.NavigateToOperation Id:

Parameters

Name Type Required Default Value

view string false

Signature

Inputs: document
 documentOutputs:

Push to Clipboard

Add a input document(s) to clipboard. Returns back the document(s) General Information

Category: User Interface
 Seam.AddToClipboardOperation Id:

Parameters

Name Type Required Default Value

Signature

Inputs: document, documents
 document, documentsOutputs:

Push to Seam Context

Push the current input document into Seam context. Returns back the document. General Information

Category: User Interface
 Seam.PushDocumentOperation Id:

Parameters

Name Type Required Default Value

name string true

scope string true session, conversation, page,
event

Signature

Inputs: document
 documentOutputs:

Push to Worklist

Add the input document(s) to worklist. Returns back the document(s) General Information

Category: User Interface
 Seam.AddToWorklistOperation Id:

Parameters

Name Type Required Default Value

Signature

Inputs: document, documents
 document, documentsOutputs:

Refresh

Refresh the UI cache. This is a void operation - the input object is returned back as the oputput General Information

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

405
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

Category: User Interface
 Seam.RefreshOperation Id:

Parameters

Name Type Required Default Value

Signature

Inputs: void
 voidOutputs:

Show Create Document Page

Show the document creation form given a type. This is a void operation - the input object is returned back as the oputput General Information

Category: User Interface
 Seam.CreateDocumentFormOperation Id:

Parameters

Name Type Required Default Value

type string true

Signature

Inputs: void
 voidOutputs:

Files

Attach File

Attach the input file to the document given as a parameter. If the xpath points to a blob list then the blob is appended to the list, otherwise the
xpath should point to a blob property. If the save parameter is set the document modification will be automatically saved. Return the blob. General
Information

Category: Files
 Blob.AttachOperation Id:

Parameters

Name Type Required Default Value

document document true

save boolean false true

xpath string false file:content

Signature

Inputs: blob, bloblist
 blob, bloblistOutputs:

Export to File

Save the input blob(s) as a file(s) into the given target directory. The blob(s) filename is used as the file name. You can specify an optional prefix
string to prepend to the file name. Return back the blob(s). General Information

Category: Files
 Blob.ToFileOperation Id:

Parameters

Name Type Required Default Value

directory string true

prefix string false

Signature

Inputs: blob, bloblist
 blob, bloblistOutputs:

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

406
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

Get Document File

Gets a file attached to the input document. The file location is specified using an xpath to the blob property of the document. Returns the file. Gen
eral Information

Category: Files
 Blob.GetOperation Id:

Parameters

Name Type Required Default Value

xpath string false file:content

Signature

Inputs: document, documents
 blob, bloblistOutputs:

Get Document Files

Gets a list of files that are attached on the input document. The files location should be specified using the blob list property xpath. Returns a list
of files. General Information

Category: Files
 Blob.GetListOperation Id:

Parameters

Name Type Required Default Value

xpath string false files:files

Signature

Inputs: document, documents
 bloblist, bloblistOutputs:

HTTP Post

Post the input file to a target HTTP URL. Returns back the input file. General Information

Category: Files
 Blob.PostOperation Id:

Parameters

Name Type Required Default Value

url string true

Signature

Inputs: blob, bloblist
 blob, bloblistOutputs:

Remove File

Remove the file attached to the input document as specified by the 'xpath' parameter. If the 'xpath' point to a blob list then the list will be cleared. If
the file to remove is part of a list it will be removed from the list otherwise the 'xpath' should point to a blob property that will be removed. If the
save parameter is set the document modification will be automatically saved. Return the document. General Information

Category: Files
 Blob.RemoveOperation Id:

Parameters

Name Type Required Default Value

save boolean false true

xpath string false file:content

Signature

Inputs: document, documents
 document, documentsOutputs:

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

407
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

Set File Name

Modify the filename of a file stored in the input document. The file is found in the input document given its xpath specified through the 'xpath'
parameter. Return back the input document. General Information

Category: Files
 Blob.SetFilenameOperation Id:

Parameters

Name Type Required Default Value

name string true

save boolean false true

xpath string false file:content

Signature

Inputs: document, documents
 document, documentsOutputs:

Zip

Creates a zip file from the input file(s). If no file name is given, the first file name in the input will be used. Returns the zip file. General Information

Category: Files
 Blob.CreateZipOperation Id:

Parameters

Name Type Required Default Value

filename string false

Signature

Inputs: blob, bloblist
 blob, blobOutputs:

Document

Check In

Checks in the input document. Returns back the document. General Information

Category: Document
 Document.CheckInOperation Id:

Parameters

Name Type Required Default Value

version string true minor, major

comment string false

versionVarName string false

Signature

Inputs: document, documents
 document, documentsOutputs:

Check Out

Checks out the input document. Returns back the document. General Information

Category: Document
 Document.CheckOutOperation Id:

Parameters

Name Type Required Default Value

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

408
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

Signature

Inputs: document, documents
 document, documentsOutputs:

Copy

Copy the input document into the given folder. The name parameter will be used as the copy name otherwise if not specified the original name will
be preserved. The target folder can be specified as an absolute or relative path (relative to the input document) as an UID or by using an EL
expression. Return the newly created document (the copy). General Information

Category: Document
 Document.CopyOperation Id:

Parameters

Name Type Required Default Value

target document true

name string false

Signature

Inputs: document, documents
 document, documentsOutputs:

Create

Create a new document in the input folder. You can initialize the document properties using the 'properties' parameter. The properties are
specified as pairs separated by a new line. The key used for a property is the property xpath. To specify multi-line values you can usekey=value
a \ charcater followed by a new line.

Example:
dc:title=The Document Title
dc:description=foo bar

. Returns the created document. General Information

Category: Document
 Document.CreateOperation Id:

Parameters

Name Type Required Default Value

type string true

name string false

properties properties false

Signature

Inputs: document, documents
 document, documentsOutputs:

Delete

Delete the input document. The previous context input will be restored for the next operation. General Information

Category: Document
 Document.DeleteOperation Id:

Parameters

Name Type Required Default Value

Signature

Inputs: document, documents
 document, documentsOutputs:

Filter List

Filter the input list of documents given a condition. The condition can be expressed using 4 parameters: types, facets, lifecycle and condition. If
more than one parameter is specified an AND will be used to group conditions.

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

409
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

The 'types' paramter can take a comma separated list of document type: File,Note.
The 'facet' parameter can take a single facet name.
The 'life cycle' parameter takes a name of a life cycle state the document should have.
The 'condition' parameter can take any EL expression.

Returns the list of documents that match the filter condition. General Information

Category: Document
 Document.FilterOperation Id:

Parameters

Name Type Required Default Value

class string false Any, Regular Document,
Document Link, Published
Document, Document Proxy,
Document Version, Immutable
Document, Mutable Document

condition string false

facet string false

lifecycle string false

pathStartsWith string false

types string false

Signature

Inputs: documents
 documentsOutputs:

Follow Life Cycle Transition

Follow the given transition on the input document life cycle state General Information

Category: Document
 Document.SetLifeCycleOperation Id:

Parameters

Name Type Required Default Value

value string true

Signature

Inputs: document, documents
 document, documentsOutputs:

Get Child

Get a child document given its name. Take as input the parent document and return the child document. General Information

Category: Document
 Document.GetChildOperation Id:

Parameters

Name Type Required Default Value

name string true

Signature

Inputs: document, documents
 document, documentsOutputs:

Get Children

Get the children of a document. The list of children will become the input for the next operation General Information

Category: Document
 Document.GetChildrenOperation Id:

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

410
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

Parameters

Name Type Required Default Value

Signature

Inputs: document, documents
 documents, documentsOutputs:

Get Parent

Get the parent document of the input document. The parent document will become the input for the next operation. You can use the 'type'
parameter to specify which parent to select from the document ancestors General Information

Category: Document
 Document.GetParentOperation Id:

Parameters

Name Type Required Default Value

type string false

Signature

Inputs: document, documents
 document, documentsOutputs:

Lock

Lock the input document for the current user. Returns back the locked document. General Information

Category: Document
 Document.LockOperation Id:

Parameters

Name Type Required Default Value

owner string false

Signature

Inputs: document, documents
 document, documentsOutputs:

Move

Move the input document into the target folder. General Information

Category: Document
 Document.MoveOperation Id:

Parameters

Name Type Required Default Value

target document true

name string false

Signature

Inputs: document, documents
 document, documentsOutputs:

Multi-Publish

Publish the input document(s) into several target sections. The target is evaluated to a document list (can be a path, UID or EL expression).
Existing proxy is overrided if the override attribute is set. Returns a list with the created proxies. General Information

Category: Document
 Document.MultiPublishOperation Id:

Parameters

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

411
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

Name Type Required Default Value

target documents true

override boolean false true

Signature

Inputs: document, documents
 documents, documentsOutputs:

Publish Document

Publish the input document into the target section. Existing proxy is overrided if the override attribute is set. Return the created proxy. General
Information

Category: Document
 Document.PublishOperation Id:

Parameters

Name Type Required Default Value

target document true

override boolean false true

Signature

Inputs: document, documents
 document, documentsOutputs:

Remove ACL

Remove a named Acces Control List from the input document(s). Returns the document(s). General Information

Category: Document
 Document.RemoveACLOperation Id:

Parameters

Name Type Required Default Value

acl string true

Signature

Inputs: document, documents
 document, documentsOutputs:

Remove Property

Remove the given property of the input document(s) as specified by the 'xpath' parameter. If the property points to a list then clear the list.
Removing a property means setting it to null. Return the document(s). General Information

Category: Document
 Document.RemovePropertyOperation Id:

Parameters

Name Type Required Default Value

xpath string true

save boolean false true

Signature

Inputs: document, documents
 document, documentsOutputs:

Reset

Reload the input document from the repository. Any previous modification made by the chain on this document will be lost if these modifications
were not saved. Return the reloaded document. General Information

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

412
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

Category: Document
 Document.ReloadOperation Id:

Parameters

Name Type Required Default Value

Signature

Inputs: document, documents
 document, documentsOutputs:

Save

Save in the repository any modification that was done on the input document. Returns the saved document. General Information

Category: Document
 Document.SaveOperation Id:

Parameters

Name Type Required Default Value

Signature

Inputs: document, documents
 document, documentsOutputs:

Set ACL

Set Acces Control Entry on the input document(s). Returns the document(s). General Information

Category: Document
 Document.SetACEOperation Id:

Parameters

Name Type Required Default Value

permission string true

user string true

acl string false local

grant boolean false true

overwrite boolean false true

Signature

Inputs: document, documents
 document, documentsOutputs:

Set File

Set the input file to the given property on the input document. If the xpath points to a blob list then the blob is appended to the list, otherwise the
xpath should point to a blob property. If the save parameter is set the document modification will be automatically saved. Return the document. G
eneral Information

Category: Document
 Blob.SetOperation Id:

Parameters

Name Type Required Default Value

file blob true

save boolean false true

xpath string false file:content

Signature

Inputs: document, documents
 document, documentsOutputs:

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

413
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

Snapshot Version

Create a new version for the input document. Any modification made on the document by the chain will be automatically saved. Increment version
if this was specified through the 'snapshot' parameter. Returns the live document (not the version). General Information

Category: Document
 Document.CreateVersionOperation Id:

Parameters

Name Type Required Default Value

increment string false None, Minor, Major

Signature

Inputs: document, documents
 document, documentsOutputs:

Unlock

Unlock the input document. The unlock will be executed in the name of the current user. An user can unlock a document only if has the UNLOCK
permission granted on the document or if it the same user as the one that locked the document. Return the unlocked document General
Information

Category: Document
 Document.UnlockOperation Id:

Parameters

Name Type Required Default Value

Signature

Inputs: document, documents
 document, documentsOutputs:

Update Properties

Set multiple properties on the input document. The properties are specified as pairs separated by a new line. The key used for akey=value
property is the property xpath. To specify multi-line values you can use a \ charcater followed by a new line.

Example:
dc:title=The Document Title
dc:description=foo bar

. Returns back the updated document. General Information

Category: Document
 Document.UpdateOperation Id:

Parameters

Name Type Required Default Value

properties properties true

save boolean false true

Signature

Inputs: document, documents
 document, documentsOutputs:

Update Property

Set a single property value on the input document. The property is specified using its xpath. The document is automatically saved if 'save'
parameter is true. If you unset the 'save' you need to save it later using Save Document operation. Return the modified document. General
Information

Category: Document
 Document.SetPropertyOperation Id:

Parameters

Name Type Required Default Value

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

414
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

value serializable true

xpath string true

save boolean false true

Signature

Inputs: document, documents
 document, documentsOutputs:

Fetch

Context Document

Fetch the input of the context as a document. The document will become the input for the next operation. General Information

Category: Fetch
 Context.FetchDocumentOperation Id:

Parameters

Name Type Required Default Value

Signature

Inputs: void
 documentOutputs:

Document

Fetch a document from the repository given its reference (path or UID). The document will become the input of the next operation. General
Information

Category: Fetch
 Document.FetchOperation Id:

Parameters

Name Type Required Default Value

value document true

Signature

Inputs: void
 documentOutputs:

Fetch By Property

For each specified string property value, fetch all documents that match the property and the optional where clause. Matching documents are
collected into a list and the returned to the next operation. The operation has no input. General Information

Category: Fetch
 Document.FetchByPropertyOperation Id:

Parameters

Name Type Required Default Value

property string true

values stringlist true

query string false

Signature

Inputs: void
 documentsOutputs:

File From URL

Creates a file from a given URL. The file parameter specifies how to retrieve the file content. It should be an URL to the file you want to use as the
source. You can also use an expression to get an URL from the context. Returns the created file. General Information

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

415
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

Category: Fetch
 Blob.CreateOperation Id:

Parameters

Name Type Required Default Value

file resource true

encoding string false

filename string false

mime-type string false

Signature

Inputs: void
 blobOutputs:

PageProvider

Perform a query or a named provider query on the repository. Result is paginated. The query result will become the input for the next operation. If
no query or provider name is given, a query returning all the documents that the user has access to will be executed. General Information

Category: Fetch
 Document.PageProviderOperation Id:

Parameters

Name Type Required Default Value

language string false NXQL

page integer false

pageSize integer false

providerName string false

query string false

queryParams stringlist false

sortInfo stringlist false

Signature

Inputs: void
 documentsOutputs:

Query

Perform a query on the repository. The query result will become the input for the next operation. General Information

Category: Fetch
 Document.QueryOperation Id:

Parameters

Name Type Required Default Value

query string true

language string false NXQL

Signature

Inputs: void
 documentsOutputs:

UI Clipboard

Get clipboard content from the UI context. General Information

Category: Fetch
 Seam.FetchFromClipboardOperation Id:

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

416
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

Parameters

Name Type Required Default Value

Signature

Inputs: void
 documentsOutputs:

UI Current Document

Get the current Document from the UI context. General Information

Category: Fetch
 Seam.GetCurrentDocumentOperation Id:

Parameters

Name Type Required Default Value

Signature

Inputs: void
 documentOutputs:

UI Current Domain

Get the current Domain from the UI context. General Information

Category: Fetch
 Seam.GetCurrentDomainOperation Id:

Parameters

Name Type Required Default Value

Signature

Inputs: void
 documentOutputs:

UI Current Workspace

Get the current Workspace from the UI context. General Information

Category: Fetch
 Seam.GetCurrentWorkspaceOperation Id:

Parameters

Name Type Required Default Value

Signature

Inputs: void
 documentOutputs:

UI Document From Seam

Fetch a document from the Seam context given its Seam name. General Information

Category: Fetch
 Seam.FetchDocumentOperation Id:

Parameters

Name Type Required Default Value

name string true

Signature

Inputs: void
 documentOutputs:

UI Selected documents

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

417
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

Fetch the documents selected in the current folder listing General Information

Category: Fetch
 Seam.GetSelectedDocumentsOperation Id:

Parameters

Name Type Required Default Value

Signature

Inputs: void
 documentsOutputs:

UI Worklist

Get worklist content from the UI context. General Information

Category: Fetch
 Seam.FetchFromWorklistOperation Id:

Parameters

Name Type Required Default Value

Signature

Inputs: void
 documentsOutputs:

Conversion

Convert To PDF

Convert the input file to a PDF and return the new file. General Information

Category: Conversion
 Blob.ToPDFOperation Id:

Parameters

Name Type Required Default Value

Signature

Inputs: document, blob, bloblist
 blob, blob, bloblistOutputs:

Get image view

Get an image from a Picture document. General Information

Category: Conversion
 Picture.getViewOperation Id:

Parameters

Name Type Required Default Value

viewName string false

Signature

Inputs: document
 blobOutputs:

Render Document

Get a document or a list of document in input and outputs one or more blobs that contain a rendered view for each input document given a
rendering template. The template attribute may contain either the template content either a template URI. Template URis are strings in the form
'template:template_name' and will be located using the runtime resource service. Return the rendered file(s) as blob(s) General Information

Category: Conversion
 Render.DocumentOperation Id:

Parameters

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

418
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

Name Type Required Default Value

template string true

filename string false output.ftl

mimetype string false text/xml

type string false ftl, mvel

Signature

Inputs: document, documents
 blob, bloblistOutputs:

Render Document Feed

Get a list of documents as input and outputs a single blob containing the rendering of the document list. The template attribute may contain either
the template content either a template URI. Template URis are strings in the form 'template:template_name' and will be located using the runtime
resource service. Return the rendered blob General Information

Category: Conversion
 Render.DocumentFeedOperation Id:

Parameters

Name Type Required Default Value

template string true

filename string false output.ftl

mimetype string false text/xml

type string false ftl, mvel

Signature

Inputs: documents
 blobOutputs:

Resize a picture

Use conversion servcie to resize a picture contained in a Document or a Blob General Information

Category: Conversion
 Picture.resizeOperation Id:

Parameters

Name Type Required Default Value

maxHeight int true

maxWidth int true

Signature

Inputs: document, blob
 blob, blobOutputs:

Services

Create Relation

Create a relation between 2 documents. The subject of the relation will be the input of the operation and the object of the relation will be retrieved
from the context using the 'object' field. The 'predicate' field specify the relation predicate. The 'outgoing' flag indicates the direction of the relation
- the default is false which means the relation will go from the input object to the object specified as 'object' parameter. Return back the subject
document. General Information

Category: Services
 Relations.CreateRelationOperation Id:

Parameters

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

419
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

Name Type Required Default Value

object document true

predicate string true

outgoing boolean false false

Signature

Inputs: document, documents
 document, documentsOutputs:

Create task

Enable to create a task bound to the document.

Directive, and will be displayed in the task list of the user. In and fields, youcomment due date accept operation chain reject operation chain
can put the operation chain ID of your choice among the one you contributed. Those operations will be executed when the user validates the task,
depending on whether he accepts or rejects the task. You have to specify a variable name (the parameter) to resolve target users andkey for ...
groups to which the task will be assigned. You can use Get Users and Groups to update a context variable with some users and groups. If you
check , each of the actors will have a task to achieve, versus "the first who achieve the task makes it disappear for thecreate one task per actor
others".
General Information

Category: Services
 Workflow.CreateTaskOperation Id:

Parameters

Name Type Required Default Value

task name string true

due date date false

directive string false

comment string false

accept operation chain string false

reject operation chain string false

variable name for actors prefixed
ids

string false

additional list of actors prefixed
ids

stringlist false

create one task per actor boolean false true

Signature

Inputs: document, documents
 document, documentsOutputs:

Get Linked Documents

Get the relations for the input document. The 'outgoing' parameter ca be used to specify whether outgoing or incoming relations should be
returned. Retuns a document list. General Information

Category: Services
 Relations.GetRelationsOperation Id:

Parameters

Name Type Required Default Value

predicate string true

outgoing boolean false

Signature

Inputs: document

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

420
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

 documentsOutputs:

Get user tasks

List tasks assigned to this user or one of its group.Task properties are serialized using JSON and returned in a Blob. General Information

Category: Services
 Workflow.GetTaskOperation Id:

Parameters

Name Type Required Default Value

Signature

Inputs: void
 blobOutputs:

Log Event In Audit

Log events into audit for each of the input document. The operation accept as input one ore more documents that are returned back as the output.
General Information

Category: Services
 Audit.LogOperation Id:

Parameters

Name Type Required Default Value

event string true

category string false Automation

comment string false

Signature

Inputs: document, documents
 document, documentsOutputs:

Query Audit Service

Execute a JPA query against the Audit Service. This is returning a blob with the query result. The result is a serialized JSON array. You can use
the context to set query variables but you must prefix using 'audit.query.' the context variable keys that match the ones in the query. General
Information

Category: Services
 Audit.QueryOperation Id:

Parameters

Name Type Required Default Value

query string true

maxResults int false

pageNo int false

Signature

Inputs: void
 blobOutputs:

Users & Groups

Get Principal Emails

Fetch the principal emails that have a given permission on the input document and then set them in the context under the given key variable
name. The operation returns the input document. You can later use the list of principals set by this operation on the context from another
operation. The 'key' argument represents the variable name and the 'permission' argument the permission to check. If the 'ignore groups'
argument is false then groups are recursively resolved, extracting user members of these groups. Be that this may be a very consumingwarned
operation.

Note that

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

421
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

groups are not included
the list pushed into the context is a string list of emails.

General Information

Category: Users & Groups
 Document.GetPrincipalEmailsOperation Id:

Parameters

Name Type Required Default Value

permission string true

variable name string true

ignore groups boolean false false

Signature

Inputs: document
 documentOutputs:

Get User Setting

Get user setting from given type General Information

Category: Users & Groups
 Document.getSettingOperation Id:

Parameters

Name Type Required Default Value

type string true

Signature

Inputs: void
 documentOutputs:

Get User Settings

Get user settings from given category General Information

Category: Users & Groups
 Document.getSettingsOperation Id:

Parameters

Name Type Required Default Value

category string true

Signature

Inputs: void
 documentsOutputs:

Get Users and Groups

Fetch the users and groups that have a given permission on the input document and then set them in the context under the given key variable
name. The operation returns the input document. You can later use the list of identifiers set by this operation on the context from another
operation. The 'key' argument represents the variable name and the 'permission' argument the permission to check. If the 'ignore groups'
argument is false then groups will be part of the result. If the 'resolve groups' argument is true then groups are recursively resolved, adding user
members of these groups in place of them. Be that this may be a very consuming operation. If the 'prefix identifiers' argument is true,warned
then user identifiers are prefixed by 'user:' and groups identifiers are prefixed by 'group:'. General Information

Category: Users & Groups
 Document.GetUsersAndGroupsOperation Id:

Parameters

Name Type Required Default Value

permission string true

variable name string true

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

422
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

ignore groups boolean false false

prefix identifiers boolean false false

resolve groups boolean false false

Signature

Inputs: document
 documentOutputs:

Login As

Login As the given user. If no user is given a system login is performed. This is a void operations - the input will be returned back as the output. G
eneral Information

Category: Users & Groups
 Auth.LoginAsOperation Id:

Parameters

Name Type Required Default Value

name string false

Signature

Inputs: void
 voidOutputs:

Logout

Perform a logout. This should be used only after using the Login As operation to restore original login. This is a void operations - the input will be
returned back as the output. General Information

Category: Users & Groups
 Auth.LogoutOperation Id:

Parameters

Name Type Required Default Value

Signature

Inputs: void
 voidOutputs:

Push & Pop

Pop Document

Restore the last saved input document in the context input stack. This operation must be used only if a PUSH operation was previously made.
Return the last document. pushed General Information

Category: Push & Pop
 Document.PopOperation Id:

Parameters

Name Type Required Default Value

Signature

Inputs: void
 documentOutputs:

Pop Document List

Restore the last saved input document list in the context input stack General Information

Category: Push & Pop
 Document.PopListOperation Id:

Parameters

Name Type Required Default Value

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

423
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

Signature

Inputs: void
 documentsOutputs:

Pop File

Restore the last saved input file in the context input stack. This operation must be used only if a PUSH operation was previously made. Return the
last file. pushed General Information

Category: Push & Pop
 Blob.PopOperation Id:

Parameters

Name Type Required Default Value

Signature

Inputs: void
 blobOutputs:

Pop File List

Restore the last saved input file list in the context input stack General Information

Category: Push & Pop
 Blob.PopListOperation Id:

Parameters

Name Type Required Default Value

Signature

Inputs: void
 bloblistOutputs:

Pull Document

Restore the first saved input document in the context input stack. This operation must be used only if a PUSH operation was previously made.
Return the first document. pushed General Information

Category: Push & Pop
 Document.PullOperation Id:

Parameters

Name Type Required Default Value

Signature

Inputs: void
 documentOutputs:

Pull Document List

Restore the first saved input document list in the context input stack General Information

Category: Push & Pop
 Document.PullListOperation Id:

Parameters

Name Type Required Default Value

Signature

Inputs: void
 documentsOutputs:

Pull File

Restore the last saved input file in the context input stack. This operation must be used only if a PUSH operation was previously made. Return the
first file. pushed General Information

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

424
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

Category: Push & Pop
 Blob.PullOperation Id:

Parameters

Name Type Required Default Value

Signature

Inputs: void
 blobOutputs:

Pull File List

Restore the first saved input file list in the context input stack General Information

Category: Push & Pop
 Blob.PullListOperation Id:

Parameters

Name Type Required Default Value

Signature

Inputs: void
 bloblistOutputs:

Push Document

Push the input document on the context stack. The document can be restored later as the input using the corrresponding pop operation. Returns
the input document. General Information

Category: Push & Pop
 Document.PushOperation Id:

Parameters

Name Type Required Default Value

Signature

Inputs: document
 documentOutputs:

Push Document List

Push the input document list on the context stack. The document list can be restored later as the input using the corrresponding pop operation.
Returns the input document list. General Information

Category: Push & Pop
 Document.PushListOperation Id:

Parameters

Name Type Required Default Value

Signature

Inputs: documents
 documentsOutputs:

Push File

Push the input file on the context stack. The file can be restored later as the input using the corrresponding pop operation. Returns the input file.
General Information

Category: Push & Pop
 Blob.PushOperation Id:

Parameters

Name Type Required Default Value

Signature

Inputs: blob

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

425
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

 blobOutputs:

Push File List

Push the input file list on the context stack. The file list can be restored later as the input using the corrresponding pop operation. Returns the
input file list. General Information

Category: Push & Pop
 Blob.PushListOperation Id:

Parameters

Name Type Required Default Value

Signature

Inputs: bloblist
 bloblistOutputs:

Execution Context

Restore Document Input

Restore the document input from a context variable given its name. Return the document. General Information

Category: Execution Context
 Context.RestoreDocumentInputOperation Id:

Parameters

Name Type Required Default Value

name string true

Signature

Inputs: void
 documentOutputs:

Restore Documents Input

Restore the document list input from a context variable given its name. Return the document list. General Information

Category: Execution Context
 Context.RestoreDocumentsInputOperation Id:

Parameters

Name Type Required Default Value

name string true

Signature

Inputs: void
 documentsOutputs:

Restore File Input

Restore the file input from a context variable given its name. Return the file. General Information

Category: Execution Context
 Context.RestoreBlobInputOperation Id:

Parameters

Name Type Required Default Value

name string true

Signature

Inputs: void
 blobOutputs:

Restore Files Input

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

426
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

Restore the file list input from a context variable given its name. Return the files. General Information

Category: Execution Context
 Context.RestoreBlobsInputOperation Id:

Parameters

Name Type Required Default Value

name string true

Signature

Inputs: void
 bloblistOutputs:

Set Context Variable

Set a context variable given a name and the value. To compute the value at runtime from the current context you should use an EL expression as
the value. This operation works on any input type and return back the input as the output. General Information

Category: Execution Context
 Context.SetVarOperation Id:

Parameters

Name Type Required Default Value

name string true

value object true

Signature

Inputs: void
 voidOutputs:

Set Context Variable From Input

Set a context variable that points to the current input object. You must give a name for the variable. This operation works on any input type and
return back the input as the output. General Information

Category: Execution Context
 Context.SetInputAsVarOperation Id:

Parameters

Name Type Required Default Value

name string true

Signature

Inputs: void
 voidOutputs:

Execution Flow

Run Document Chain

Run an operation chain which is returning a document in the current context. The input for the chain ro run is the current input of the operation.
Return the output of the chain as a document. General Information

Category: Execution Flow
 Context.RunDocumentOperationOperation Id:

Parameters

Name Type Required Default Value

id string true

Signature

Inputs: document, documents
 document, documentsOutputs:

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

427
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

Run Operation

Run an operation chain in the current context General Information

Category: Execution Flow
 Context.RunOperationOperation Id:

Parameters

Name Type Required Default Value

id string true

Signature

Inputs: void
 voidOutputs:

Save Session

Commit any changes made by the operation on the documents. This can be used to explicitly commit changes. This operation can be executed
on any type of input. The input of this operation will be preserved as the input for the next operation in the chain. General Information

Category: Execution Flow
 Document.SaveSessionOperation Id:

Parameters

Name Type Required Default Value

Signature

Inputs: void
 voidOutputs:

Scripting

Run Input Script

Run a script from the input blob. A blob comtaining script result is returned. General Information

Category: Scripting
 Context.RunInputScriptOperation Id:

Parameters

Name Type Required Default Value

type string false mvel, groovy

Signature

Inputs: blob
 blobOutputs:

Run Script

Run a script which content is specified as text in the 'script' parameter General Information

Category: Scripting
 Context.RunScriptOperation Id:

Parameters

Name Type Required Default Value

script string true

Signature

Inputs: void
 voidOutputs:

Notification

Send E-Mail

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

428
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

Send an email using the input document to the specified recipients. You can use the HTML parameter to spoecify whether you message is in
HTML format or in plain text. Also you can attach any blob on the current document to the message by using the comma separated list of xpath
expressions 'files'. If you xpath points to a blob list all blobs in the list will be attached. Return back the input document(s). General Information

Category: Notification
 Notification.SendMailOperation Id:

Parameters

Name Type Required Default Value

from string true

message string true

subject string true

to stringlist true

HTML boolean false false

files stringlist false

viewId string false view_documents

Signature

Inputs: document, documents
 document, documentsOutputs:

Send Event

Send a Nuxeo event. General Information

Category: Notification
 Notification.SendEventOperation Id:

Parameters

Name Type Required Default Value

name string true

Signature

Inputs: void
 voidOutputs:

Contributing an Operation
Implementing An Operation

In order to implement an operation you need to create a Java class annotated with . An operation class should also provide at least@Operation
one method that will be invoked by the automation service when executing the operation. To mark a method as executable you must annotate it
using .@OperationMethod

You can have multiple methods - one method for each type of input/output objects supported by an operation. The right method will beexecutable
selected at runtime depending on the type of the input object (and of the type of the required input of the next operation when in an operation
chain).

So, an operation method will be selected if the method argument match the current input object and the return type match the input required by
the next operation if in an operation chain.

The @OperationMethod annotation is also providing an optional priority attribute that can be used to specify which method is preferred over the
other matching methods. This situation (having multiple method that matches an execution) can happen because the input and output types are
not strictly matched. For example if the input of a method is a DocumentModel object and the input of another method is a DocumentRef object
then both methods have the same input signature for the automation framework because DocumentModel and DocumentRef are objects of the
same kind - they represent a Nuxeo Document. When you need to treat different Java objects as the same type of input (or output) you must
create a type adapter (see interface) that knows how to convert a given object to another type. Withoutorg.nuxeo.ecm.automation.TypeAdapter
type adapters treating different Java objects as the same type of object is not possible.

Also operations can provide parametrizable variables so that when an user is defining an operation chain he can define values that will be injected
in the operation parameters. To declare parameters you should use the annotation.@Param

Apart these annotations there is one more annotation provided by the automation service - the annotation. This annotation can be used@Context
to inject execution context objects or Nuxeo Service instances into a running operation.

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

429
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

When registering an operation chain the chain will be checked to find a path from the first operation to the last one to be sure the chain can be
executed at runtime. Finding a path means to identify at least one method in each operation that is matching the signature of the next operation. If
such a path could not be found an error is thrown (at registration time). For more detail on registering an operation chains see Contributing an

.automation chain

To register your operation you should create a Nuxeo XML extension to the extension point. Example:operations

<extension target="org.nuxeo.ecm.core.operation.OperationServiceComponent"
 point="operations">
 <operation
 class="org.nuxeo.example.TestOperation" />
 </extension>

where is the class name of your operation (the one annotated with).org.nuxeo.example.TestOperation @Operation

Let's look at the following operation class to see how annotations were used:

import org.nuxeo.ecm.automation.core.Constants;
import org.nuxeo.ecm.automation.core.annotations.Context;
import org.nuxeo.ecm.automation.core.annotations.Operation;
import org.nuxeo.ecm.automation.core.annotations.OperationMethod;
import org.nuxeo.ecm.automation.core.annotations.Param;
import org.nuxeo.ecm.automation.core.util.DocumentHelper;
import org.nuxeo.ecm.automation.core.util.Properties;
import org.nuxeo.ecm.core.api.CoreSession;
import org.nuxeo.ecm.core.api.DocumentModel;
import org.nuxeo.ecm.core.api.DocumentModelList;
import org.nuxeo.ecm.core.api.DocumentRef;
import org.nuxeo.ecm.core.api.DocumentRefList;
import org.nuxeo.ecm.core.api.impl.DocumentModelListImpl;

@Operation(id = CreateDocument.ID, category = Constants.CAT_DOCUMENT, label =
"Create", description = "Create a new document in the input folder ...")
public class CreateDocument {

 public final static String ID = "Document.Create";

 @Context
 protected CoreSession session;

 @Param(name = "type")
 protected String type;

 @Param(name = "name", required = false)
 protected String name;

 @Param(name = "properties", required = false)
 protected Properties content;

 @OperationMethod
 public DocumentModel run(DocumentModel doc) throws Exception {
 if (name == null) {
 name = "Untitled";
 }
 DocumentModel newDoc = session.createDocumentModel(
 doc.getPathAsString(), name, type);
 if (content != null) {
 DocumentHelper.setProperties(session, newDoc, content);
 }

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

430
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

 return session.createDocument(newDoc);
 }

 @OperationMethod
 public DocumentModelList run(DocumentModelList docs) throws Exception {
 DocumentModelListImpl result = new DocumentModelListImpl(
 (int) docs.totalSize());
 for (DocumentModel doc : docs) {
 result.add(run(doc));
 }
 return result;
 }

 @OperationMethod
 public DocumentModelList run(DocumentRefList docs) throws Exception {
 DocumentModelListImpl result = new DocumentModelListImpl(
 (int) docs.totalSize());
 for (DocumentRef doc : docs) {
 result.add(run(session.getDocument(doc)));
 }
 return result;

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

431
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

1.
2.
3.

 }
}

You can see how is used to inject the current CoreSession instance into the session member. It is recommended to use this technique@Context
to acquire a CoreSession instead of creating a new session - this way you reuse the same CoreSession used by all the other operation in the
chain. You don't need to worry about closing the session - the automation service will close the session for you when needed.

You can use also to inject any Nuxeo Service or the instance of the object that represents the current execution@Context OperationContext
context and that holds the execution state - like the last input, the context parameters, the core session, the current principal etc.

The attributes of the annotation are required by operation chain creation tools like the one in to be able to generate the@Operation Nuxeo Studio
list of existing operations and some additional operation information - like its name, a short description on how the operation is working etc. For a
complete description of these attributes look into the annotation JavaDoc.

You can see the operation above provide 3 operation methods with different signatures:

one that takes a Document and return a Document object.
one that takes a list of document objects and return a list of documents.
one that takes a list of document references and return a list of documents.

Depending on what the input object is when calling this operation, only one of these methods will be used to do the processing. You can notice
that there is no method taking a document reference. This is because the document reference is automatically adapted into a DocumentModel
object when needed thanks to a dedicated TypeAdapter.

The initial input of an operation (or operation chain) execution is provided by the caller (the one that create the execution context). Nuxeo provides
several execution contexts:

An core event listener that executes operations in response to core events.
An action bean that executes operations in response to the user actions (through the Nuxeo Web Interface)
A JAX-RS resource which executes operations in response to Rest calls.
A special listener fired by the workflow service to execute an operation chain.

Each of these execution contextes are providing the initial input for the chain (or operation) to be executed. For example the core event listener
will use as the initial input the document that is the source of the event. The action bean executor will use the document currently opened in the
User Interface.

If no input exists then will be used as the input. In that case the first operation in the chain must be a operation.null void
If you need you can create your own operation executor. Just look into the existing code for examples (e.g. org.nuxeo.ecm.automation.jsf.Operati

).onActionBean

The code needed to invoke an operation or an operation chain is pretty simple. You need to do something like this:

CoreSession session = fetchCoreSession();
 AutomationService automation = Framework.getService(AutomationService.class);
 OperationContext ctx = new OperationContext(session);
 ctx.setInput(navigationContext.getCurrentDocument());
 try {
 Object result = automation.run(ctx, "the_chain_name");
 // ... do something with the result
 } catch (Throwable t) {
 // handle errors
 }

To invoke operations is a little more complicated since you also need to set the operation parameters.

Let's look again at the operation class defined above. You can see that operation parameters are declared as class fields using the anno@Param
tation.

This annotation has several attributes like a parameter name, a required flag, a default value if any, a widget type to be used by UI operation
chain builders like etc.Nuxeo Studio

The parameter name is important since it is the key you use when defining an operation chain to refer to a specific operation parameter. If the
parameter is required then its value must be specified in the operation chain definition otherwise an exception is thrown at runtime. The other
parameters are useful only for UI tools that introspect the operations. For example when building an operation chain in you need toNuxeo Studio
render each operation parameter using a widget. The default is to use a TextBox if the parameter is a String, a CheckBox if the parameter is a
boolean, a ListBox for lists etc. But in some situations you may want to override this default mapping - for example you may want to use a
TextArea instead of a TextBox for a string parameter: in that case you can use the attribute to specify your desired widget.widget

http://doc.nuxeo.com/x/GATF
https://doc.nuxeo.com/display/Studio/Automation
https://doc.nuxeo.com/display/Studio/Automation
https://doc.nuxeo.com/display/Studio/Nuxeo+Online+Services

 Nuxeo Enterprise Platform 5.4 Documentation

432
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

1.
2.
3.

4.

Parameter injection

Executing an operation is done as following:

A new operation instance is created (operations are stateless)
The context objects are injected if any annotation is present@Context
Corresponding parameters specified by the execution context are injected into the fields annotated using and identified using@Param
the name attribute of the annotation.
The method matching the execution input and output types is invoked by passing as argument the current input. (before invoking the
method the input is adapted if any TypeAdapter was registered for the input type)

Let's look on how parameters are injected into the instance fields.

So, first the field is identified by using the parameter name. Then the value to be injected is checked to see if the value type match with the field
type. If they don't match the registered TypeAdapters are consulted for an adapter that knows how to adapt the value type into the field type. If no
adapter is found then an exception is thrown otherwise the value is adapted and injected into the parameter.
An important case is when EL expressions are used as values. In that case (if the value is an expression) then the expression is evaluated and
the result will be used as the value to be injected (and the algorithm of type matching described above is applied on the value returned by the
expression).

This means you can use for almost all field types string values since a string adapter exists for almost all parameter types used by operations.

Here is a list of the most used parameter types and the string representation for each of these types (the string representation is important since
you should use it when defining operation chains through Nuxeo XML extensions):

document. Java type: org.nuxeo.ecm.core.api.DocumentModel
Known adapters: from string, from DocumentRef
String representation: the document UID or the document absolute path. Example: "96bfb9cb-a13d-48a2-9bbd-9341fcf24801",
"/default-domain/workspaces/myws" etc.

documents. Java type: org.nuxeo.ecm.core.api.DocumentModelList
Known adapters: from DocumentRefList, from DocumentModel, from DocumentRef
No String representation exists. Cannot be used as a parameter value in an XML chain descriptor. You should use EL expressions
instead.

blob. Java type: org.nuxeo.ecm.core.api.Blob
No String representation exists. Cannot be used as a parameter value in an XML chain descriptor. You should use EL expressions
instead.

blobs. Java type: org.nuxeo.ecm.automation.core.util.BlobList
No String representation exists. Cannot be used as a parameter value in an XML chain descriptor. You should use EL expressions
instead.

properties. Java type: org.nuxeo.ecm.automation.core.util.Properties
Known adapters: from string.
String representation: a list of key value pairs in Java properties file format.

resource. Java type: java.net.URL
Known adapters: from string.

script. Java type: org.nuxeo.ecm.automation.core.scripting.Expression
String representation: Use the "expr:" prefix before your EL expression.
Example: "expr: Document.title"
For the complete list of scripting objects and functions see Use of MVEL in Automation Chains

date. Java type: .java.util.Date
Known type adapters: from string and from java.util.Calendar
String representation: W3C date format.

integer. Java type: or the long primitive type.java.lang.Long
Natural string representation.

float. Java type: or the double primitive type.java.lang.Double
Natural string representation.

boolean. Java type: or the boolean primitive type.java.lang.Boolean
Natural string representation.

string. Java type: java.lang.String
Already a string.

stringlist. Java Type: org.nuxeo.ecm.automation.core.util.StringList
Known adapters: from string
String representation: comma separated list of strings. Example: "foo, bar"

Of course, when defining the parameter values that will be injected into an operation you can either specify static values (as hard coded strings)

http://doc.nuxeo.com/x/GATF
https://doc.nuxeo.com/display/NXDOC/Use+of+MVEL+in+Automation+Chains

 Nuxeo Enterprise Platform 5.4 Documentation

433
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

either specify an EL expression to compute the actual value at runtime.
Void Operation Methods

Sometimes operations may not require any input. In that case the operation should use a method with nop parameters. Such methods will match
any input - thus it is not indicated to use two void methods in the same operation - since you cannot know which method will be selected for
execution.

This is the case for all like operations (that are fetching objects from a context). For example a Query operation is not requiring an inputfetch
since it is only doing a query on the repository. This is the definition of the Query operation:

import org.nuxeo.ecm.automation.core.Constants;
import org.nuxeo.ecm.automation.core.annotations.Context;
import org.nuxeo.ecm.automation.core.annotations.Operation;
import org.nuxeo.ecm.automation.core.annotations.OperationMethod;
import org.nuxeo.ecm.automation.core.annotations.Param;
import org.nuxeo.ecm.core.api.CoreSession;
import org.nuxeo.ecm.core.api.DocumentModelList;

@Operation(id = Query.ID, category = Constants.CAT_FETCH, label = "Query", description
= "Perform a query on the repository. The query result will become the input for the
next operation.")
public class Query {

 public static final String ID = "Document.Query";

 @Context
 protected CoreSession session;

 @Param(name = "query")
 protected String query;

 @Param(name = "language", required = false, widget = Constants.W_OPTION, values =
{ "NXQL", "CMISQL"})
 protected String lang = "NXQL";

 @OperationMethod
 public DocumentModelList run() throws Exception {
 // TODO only NXQL is supported for now
 return session.query(query);
 }
}

Also there are rare cases when you don't want to return anything from an operation. In that case the operation method must use the Javavoid
keyword and the result of the operation will be the Java object.null

Contributing an Operation Chain

An operation chain is a pipe of parametrized atomic operations. This means the operation chain specify the parametrization of each operation in
the chain and not only the list of operation to execute. Because of this when executing an operation chain you should only specify the chain name.
The chain will be fetched from the registry and operations will be executed one after the other using the parametrization present in the chain.

Chain contribution is done via Nuxeo extension mechanism. The extension point name is and the component exposing the extension pointchains
is . Here is an example of a chain extension:org.nuxeo.ecm.core.operation.OperationServiceComponent

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

434
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

 <extension target="org.nuxeo.ecm.core.operation.OperationServiceComponent"
point="chains">
 <chain id="downloadAllChain">
 <operation id="Context.FetchDocument"/>
 <operation id="Context.SetVar">
 <param type="string" name="name">aoname</param>
 <param type="object" name="value">expr:@{Document["dc:title"]}</param>
 </operation>
 <operation id="Document.GetChildren"/>
 <operation id="Blob.Get">
 <param type="string" name="xpath">file:content</param>
 </operation>
 <operation id="Blob.CreateZip">
 <param type="string" name="filename">expr:@{aoname}.zip</param>
 </operation>
 <operation id="Seam.DownloadFile"/>
 </chain>
 </extension>

This is defining a chain that will do the following:

Fetch the current document in User Interface and set it as the input of the next operation.
Set a context variable named "aoname" to the value of the input document title. The input document is returned as the input for the next
operation.
Get the children of the input document. The list of children documents is returned as the input of the next operation.
For each document in the list get the attached blob (the blob property to use is specified using the parameter) and return the list ofxpath
blobs as the input of the next operation.
Create a zip from the input list of blobs. The filename parameter is setting the file name to be used for the zip. The value of the file name
is retrieved from the "aoname" context variable that was set before i the chain. Return the zip blob as the input of the next operation.
Show the download file to download the input zip from the browser. (this is a UI operation)

Briefly this chain is getting the current document in the User Interface, extract all blobs from its direct children, zip these blobs and offer to
download the resulted zip file in the Web Browser.

You can see that the chain is specifying in order each operation that should be executed along with the parameter values to be used at runtime.
The parameter are either hard coded strings either EL expressions that allow dynamic computation of actual values.

An atomic operation in a chain is uniquely identified by its ID. Each parameter should specify the name of the operation parameter to set (see @P
 annotation in) and the type of the value to inject. The type is a hint to the chain compiler to correctly transform thearam Contributing an Operation

string into an injectable Java object.

You can find the complete list of the supported types in .Contributing an Operation

REST API

The Automation HTTP / REST Service

The Nuxeo Automation Server module provides a REST API to execute operations on a Nuxeo Server.

To use the Automation REST service you need to know the URL where the service is exposed, and the different formats used by the service to
exchange information.

All the other URLs that appears in the content exchanged between the client and server are relative paths to the automation service URL.

Operations context and parameters as well as response objects (Documents) are formated as JSON objects. To transport blobs, HTTP multipart
requests should be used to attach blob binary data along with the JSON objects describing the operation request.

The REST service is bound to the path. To get the service descrption you should do a GET onhttp://<host>/nuxeo/site/automation
the service url using an Accept type of . You will get in response the service description as a JSONapplication/json+nxautomation
document. This document will contain the list of available operations and chains, as well as the URLs for other optional services provided (like
login or document type service).

By default all the chains and operations that are not UI related are accessible through REST. Anyway you can filter the set of exposed operations
and chains or protect them using security rules. For more details on this see .REST Operation Filters

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

435
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

Example - Getting the Automation Service.

Let say the service is bound to . Then to get the service description you should do:http://localhost:8080/automation

GET http://localhost:8080/automation
Accept: application/json+nxautomation

You will get response a JSON document like:

HTTP/1.1 200 OK
Content-Type: application/json+nxautomation

{
 "paths": {"login" : "login"},
 "operations": [
 "id" : "Blob.Attach",
 "label": "Attach File",
 "category": "Files",
 "description": "Attach the input file to the document given as a parameter. If
the xpath points to a blob list then the blob is appended to the list, otherwise the
xpath should point to a blob property. If the save parameter is set the document
modification will be automatically saved. Return the blob.",
 "url": "Blob.Attach",
 "signature": ["blob", "blob"],
 "params": [
 {
 "name": "document",
 "type": "document",
 "required": true,
 "values": []
 },
 {
 "name": "save",
 "type": "boolean",
 "required": false,
 "values": ["true"]
 },
 {
 "name": "xpath",
 "type": "string",
 "required": false,
 "values": ["file:content"]
 }
]
 // ... other operations follow here
],
 "chains" : [
 // a list of operation chains (definition is identical to regular operations)
]
}

You can see the automation service is returning the registry of operations and chains available on the server.

http://doc.nuxeo.com/x/GATF
http://localhost:8080/automation_

 Nuxeo Enterprise Platform 5.4 Documentation

436
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

Each operation and chain signature is fully described to be able to do operation validation on client side, for instance.

Also some additional information that can be used in an UI is provided (operation label, full description , operation category etc.)

The "url" property of an operation (or operation chain) is the relative path to use to execute the operation.

For example if the service URL is and the operation has the url then the full URLhttp://localhost:8080/automation Blob.Attach Blob.Attach
to that operation will be:http://localhost:8080/automation/Blob.Attach

The property is used to specify various relative paths (relative to the automation service) of services exposed by the automation server.paths

In the above example you can see that the "login" service is using the relative path "login".

This service can be used to sign-in and check if the username/password is valid. To use this service you should do a POST to the login URL (e.g.
) using Basic Authentication. If authentication fails you will receive a 401 HTTP response. Otherwise the 200http://localhost:8080/automation/login

code is returned.

The login service can be used to do (and check) a user login. Note that server response is not yet implemented so youWWW-Authenticate
need to send the basic authentication header in each call if you are not using cookies (in that case you only need once to authenticate - for
example using the login service).

Executing Operations

The operations registry (loaded doing a GET on the automation service URL) contains the entire information you need to execute operations.

To execute an operation you should build an operation request descriptor and post it on the operation URL.
When sending an operation request you must use the content type.application/json+nxrequest

Also you need to authenticate (using Basic Authentication) your request since most of the operations are accessing the Nuxeo repository.

An operation request is a JSON document having the following format:

 input: "the_operation_input_object_reference",
 params: {key1: "value1", key: "value2", ...},
 context: {key1: "val1", ... }

All these three request parameters are optional and depend on the executed operation.

If the operation has no input (a void operation) then the input parameter can be omitted.

If the operation has no parameters then 'params' can be omitted.

If the operation does not want to push some specific properties in the operation execution context then context can be omitted. In fact context
parameters are useless for now but may be used in future.

The 'input' parameter is a string that acts as a reference to the real object to be used as the input.

There are 4 types of supported inputs: void, document, document list, blob, blob list.

To specify a "void" input (i.e. no input) you should omit the input parameter.

To specify a reference to a document you should use the doucment absolute path or document UID prefixed using the string " ".doc:
Example: " " or " "doc:/default-domain/workspaces/myworkspace doc:96bfb9cb-a13d-48a2-9bbd-9341fcf24801

To specify a reference to a list of documents you should use a comma separated list of absolute document paths, or UID prefixed by the string "d
". Example: " ".ocs: docs:/default-domain/workspaces/myworkspace, 96bfb9cb-a13d-48a2-9bbd-9341fcf24801

When using blobs (files) as input you cannot refer them using a string locator since the blob is usually a file on the client file system or raw binary
data.

For example, let say you want to execute the operation that takes as input a blob and set it on the given document (the documentBlob.Attach
is specified through 'params').

Because the file content you want to set is located on the client computer, you cannot use a string reference.

In that case you MUST use a multipart/related request that encapsulate as the root part your JSON request as an application/json+nxrequ
 content and the blob binary content in a related part.est

You do not need to be logged in to be able to get the automation service description

http://doc.nuxeo.com/x/GATF
http://localhost:8080/automation
http://localhost:8080/automation/Blob.Attach
http://localhost:8080/automation/login

 Nuxeo Enterprise Platform 5.4 Documentation

437
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

In case you want a list of blobs as input then you simply add one additional content part for each blob in the list.

The only limitation (in both blob and blob list case) is to put the request content part as the first part in the multipart document. The order of the
blob parts will be preserved and blobs will be processed in the same order (the server assumes the request part is the first part of the multipart
document - e.g. Content-Ids are not used by the server to identify the request part).

Example 1 - Invoking A Simple Operation

POST /automation/Document.Fetch HTTP/1.1
Accept: application/json+nxentity, */*
Content-Type: application/json+nxrequest; charset=UTF-8
Authorization: Basic QWRtaW5pc3RyYXRvcjpBZG1pbmlzdHJhdG9y
Host: localhost:8080

{"params":{"value":"/default-domain/workspaces/myws/file"},"context":{}}

This operation will return the document content specified by the " " parameter.value

Example 2 - Invoking An Operation taking as input a Blob

Here is an example on invoking operation on a document given by its path (" " inBlob.Attach /default-domain/workspaces/myws/file
our example).

POST /automation/Blob.Attach HTTP/1.1
Accept: application/json+nxentity, */*
Content-Type: multipart/related;
 boundary="----=_Part_0_130438955.1274713628403";
type="application/json+nxrequest"; start="request"
Authorization: Basic QWRtaW5pc3RyYXRvcjpBZG1pbmlzdHJhdG9y
Host: localhost:8080

------=_Part_0_130438955.1274713628403
Content-Type: application/json+nxrequest; charset=UTF-8
Content-Transfer-Encoding: 8bit
Content-ID: request
Content-Length: 75

{"params":{"document":"/default-domain/workspaces/myws/file"},"context":{}}

------=_Part_0_130438955.1274713628403
Content-Type: image/jpeg
Content-Transfer-Encoding: binary
Content-Disposition: attachment; filename=test.jpg
Content-ID: input

[binary data comes here]

------=_Part_0_130438955.1274713628403--

In both examples you can see that the following header is used:Accept

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

438
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

1.
2.
3.
4.
5.

1.
2.
3.
4.

5.
6.

Accept: application/json+nxentity, /.

This header is important since is is specifying that the client accept as a response either a JSON encoded entity, either a blob that may have any
type (in case of blob download).

The is the first content type to help the server choose the format of the response when returning an encodedapplication/json+nxentity
object.

Operation Execution Response

An Operation can have one of the following output types:

document - a repository document
documents - a list of documents
blob - a blob (binary content usually attached to a document)
blobs - a list of blobs
void - the operation has no output (output is void)

Apart from these possible outputs, the operation can abort due to an exception.

All these cases are represented using the following HTTP responses:

document -> a JSON object describing the document is returned. The used Content-Type is " "application/json+nxentity
documents -> a JSON object describing the document list is returned. The used Content-Type is " "application/json+nxentity
blob -> The blob raw content is returned. The used Content-Type will be the same as the blob mime-type.
blobs -> A Multipart/Mixed content is returned. Each part will be a blob from the list (order is preserved). Each part will use the right
Content-Type as given by the blob mime-type.
void -> HTTP is returned. No content and no Content-Type is returned.204
exception -> A status code > is returned and the content will be the server exception encoded as a JSON object.400

The used Content-Type is " ".application/json+nxentity

When an exception occurs, the server tries to return a meaningful status code. If no suitable status code is found, a generic 500 code (server
error) is used.

You noticed that each time when return objects are encoded as JSON objects, the " " Content-Type will be used.application/json+nxentity

We also saw that only document, documents and exception objects are encoded as JSON.

Here we will discuss the JSON format used to encode these objects.

Document

A JSON document entity contains the minimal required information about the document as top level entries.

These entries are always set on any document and are using the following keys:

uid - the document UID
path - the document path (in the repository)
type - the document type
state - the current life cycle state
title - the document title
lastModifed - the last modified timestamp

All the other document properties are contained within a "properties" map using the property xpath as the key for
the top level entries.

Complex properties are represented as embedded JSON objects and list properties as embedded JSON arrays.

Example of a JSON document entry:

All " " JSON entities always contains a required top level property: " ".application/json+nxentity entity-type
This property is used to identify which type of object is described. There are 3 possible entity types:

document
documents
exception

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

439
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

{
 "entity-type": "document",
 "uid": "96bfb9cb-a13d-48a2-9bbd-9341fcf24801",
 "path": "/default-domain/workspaces/myws/file",
 "type": "File",
 "state": "project",
 "title": "file",
 "lastModified": "2010-05-24T15:07:08Z",
 "properties": {
 "uid:uid": null,
 "uid:minor_version": "0",
 "uid:major_version": "1",
 "dc:creator": "Administrator",
 "dc:contributors": ["Administrator"],
 "dc:source": null,
 "dc:created": "2010-05-22T08:42:56Z",
 "dc:description": "",
 "dc:rights": null,
 "dc:subjects": [],
 "dc:valid": null,
 "dc:format": null,
 "dc:issued": null,
 "dc:modified": "2010-05-24T15:07:08Z",
 "dc:coverage": null,
 "dc:language": null,
 "dc:expired": null,
 "dc:title": "file",
 "files:files": [],
 "common:icon": null,
 "common:icon-expanded": null,
 "common:size": null,
 "file:content": {
 "name": "test.jpg",
 "mime-type": "image/jpeg",
 "encoding": null,
 "digest": null,
 "length": "290096",
 "data": "files/96bfb9cb-a13d-48a2-9bbd-9341fcf24801?path=%2Fcontent"
 },
 "file:filename": null
 }

The top level properties " " and " " have the same value as the corresponding embedded properties " " and "title lastModified dc:title dc:m
".odified

Documents

The documents JSON entity is a list of JSON document entities and have the entity type " ".documents

The documents in the list are containing only the required top level properties.

Example:

The blob data, instead of containing the raw data, contains a relative URL (relative to automation service URL) that can be used
to retrieve the real data of the blob (using a GET request on that URL).

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

440
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

{
 entity-type: "documents"
 entries: [
 {
 "entity-type": "document",
 "uid": "96bfb9cb-a13d-48a2-9bbd-9341fcf24801",
 "path": "/default-domain/workspaces/myws/file",
 "type": "File",
 "state": "project",
 "title": "file",
 "lastModified": "2010-05-24T15:07:08Z",
 },
 ...
]
 }

Exception

JSON exception entities have a " " entity type. and contains information about the exception, including the server stack trace.exception

Example:

{
 "entity-type": "exception",
 "type": "org.nuxeo.ecm.automation.OperationException",
 "status": 500,
 "message": "Failed to execute operation: Blob.Attach",
 "stack": "org.nuxeo.ecm.automation.OperationException: Failed to invoke operation
Blob.Attach\n\tat
org.nuxeo.ecm.automation.core.impl.InvokableMethod.invoke(InvokableMethod.java:143)\n\
t ..."
}

Special HTTP headers

There are two custom HTTP headers that you can use to have more control on how operations are executed:

X-NXVoidOperation

Possible values: "true" or "false". If not specified the default is "false"

This header can be used to force the server to assume that the executed operation has no content to return (a void operation).

This can be very useful when dealing with blobs to avoid having the blob output sent back to the client.

For example, if you want to set a blob content on a document using "Blob.Attach" operation, after the operation execution, the blob you sent to the
server is sent back to the client (because the operation is returning the original blob).

This behavior is useful when creating operation chains but when calling such an operation from remote it will to much network traffic than
necessary.

To avoid this use the header: X-NXVoidOperation: true

Example:

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

441
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

POST /automation/Blob.Attach HTTP/1.1
Accept: application/json+nxentity, */*
Content-Type: multipart/related;
 boundary="----=_Part_0_130438955.1274713628403";
type="application/json+nxrequest"; start="request"
Authorization: Basic QWRtaW5pc3RyYXRvcjpBZG1pbmlzdHJhdG9y
X-NXVoidOperation: true
Host: localhost:8080

------=_Part_0_130438955.1274713628403
Content-Type: application/json+nxrequest; charset=UTF-8
Content-Transfer-Encoding: 8bit
Content-ID: request
Content-Length: 75

{"params": {"document":"/default-domain/workspaces/myws/file"}, "context":{}}

------=_Part_0_130438955.1274713628403
Content-Type: image/jpeg
Content-Transfer-Encoding: binary
Content-Disposition: attachment; filename=test.jpg
Content-ID: input

[binary data comes here]

------=_Part_0_130438955.1274713628403--

X-NXDocumentProperties

This header can be used whenever a Document will be returned by the server.

The header is forcing the server to fill up the returned document with data from schemas that matches the filter.X-NXDocumentProperties

So, is a filter of schemas. If you don't use the header only the minimal required properties of the document areX-NXDocumentProperties
returned.

To have more properties in the returned document, you can specify a list of document schema names:

X-NXDocumentProperties: dublincore, file

or to have all the document content, you can use the '*' character as the filter value:

X-NXDocumentProperties: *

Document property types

Here you can find more details on the JSON document entity format.

A document entity is using a string value for any scalar property value.
Dates are encoded as W3C dates (in UTC timezone)
Apart from strings, you may have null values for properties that are not set (but are defined by the schema), JSON objects (maps) for
complex properties, and JSON arrays for array or list properties.
blob data is encoded as a relative URL (relative to automation service URL) from where you can download the raw data of the blob (using
a GET request on that URL)

Property values can be of one of these types:

string
long - encoded as a string representation of the number (in java:)Long.toString()

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

442
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

double - encoded as a string representation of the number (in java:)Double.toString()
date - encoded as a W3C format (UTC timezone preferred)
boolean - "true" or "false"
For null values the JSON null keyword is used.

Operation Request Parameters

Here you can find more details about the request format.

Request input

As we seen a request may have as input:

a document
a list of documents
a blob
a list of blobs

To refer to a document you should use either the absolute path of the document (starting with '/' !) either the document UID.

Example:
 -> to refer to the repository rootinput : "/"

 - to refer to the 'ws' workspaceinput : "/default-domain/workspaces/ws"
 - to refer to a document havin this UID.input: "96bfb9cb-a13d-48a2-9bbd-9341fcf24801"

To refer to a list of documents, you must use a comma separated list of document identifiers.

Example:
input: "/default-domain/workspaces/ws, 96bfb9cb-a13d-48a2-9bbd-9341fcf24801"

When using a blob as the input of an operation, you cannot use the "input" request property since the blob may contain binary data.
In that case you must use a Multipart/Related request as described above and put the blob raw data in the second body part of the request.

To use a list of blobs as the input, you should use the same method as for a single blob, and put each blob in the list in a separate body part.

Note that the order of the body parts is important: blobs will be processed in the same order that they appear in the Multipart document.

Also, when using Multipart/Related requests you must always put the JSON encoded request in the first body part.

Request parameter types

The operation parameters specified inside the 'params' property of the request are all strings.

Operation parameters are typed, so on the server side the operation will know how to decode parameters in real java classes.

The supported parameter types are: string, long (integer number), double (floating point number), date, properties, document, documents, EL
expression, EL template.

Here are some rules on how to encode operation parameters:

string: let it as is
long: just use a string representation of the number (in java Long.toString())
double: just use a string representation of the number (in java Double.toString())
date: use W3C format (UTC timezone preferred)
boolean: "true" or "false"
document: use the document UID or the absolute document path
documents: use a comma separated list of document references.
EL expression: put the "expr:" string before your EL expression. (e.g. "expr: Document.path")
EL template: put the "expr:" string before your template. E.g.

expr: SELECT * FROM Document WHERE dc:title=@{my_var}

Note that expressions also you specify relative paths (relative to the context document) using " ".expr: ./my/doc

In fact all these encoding rules are the same as the one you can use when defining operation chains in Nuxeo XML extensions.

Operation chains

You can see operation chains as macro operations. These are chains of atomic operations that are registered on the server.

To extend the default operation set provided by Nuxeo, you can either write your own atomic operation, either define an operation chain through a
Nuxeo XML extension.

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

443
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

When defining an operation chain on the server, it will become visible in the operation registry returned by the GET request o the automation
service.

You must note that operation chains do not take parameters (only an input) because when defining such a chain, you also define all the
parameters needed by each operation in the chain.

If you need parameterizable parameters (their value are computed at each execution), then use EL expressions as values.

Operation vs. Transactions

The server runs an operation or operation chain in a single transaction. A rollback is done if the operation execution caused an exception.

The transaction is committed when the operation (or operation chain) successfully terminated.

Operations can be executed in two different contexts: either in the context of a stateful repository session, either one session per operation.

By default operations are reusing the same session if your client supports cookies (even in Basic Authentication).

To enable stateless sessions, you need to modify some Nuxeo configuration. This will not be explained here (TODO: add link).

In stateless mode the session is closed at the end of the request.

Note that automation service is using Nuxeo WebEngine for HTTP request management.

Operation Security

Some operations are allowed to be executed only by some users or groups. This is defined on the server side through Nuxeo XML extensions.

See for more details.REST Operation Filters

JavaScript clients

The automation service is ready to use with JavaScript clients (from a browser).

Browser support will be improved by working on encoding support to execute operations.Multipart/form-data

A GWT client will be provided as an example.

Java Clients

A Java client is in progress. More details later.

REST Operation Filters

Almost all the registered operations and chains are automatically exposed through a REST interface to be invoked from remote clients. The
UI-specific operations are not exposed through REST since they require a Web User Interface to work.

For security reasons, you may want to prevent some operations to be accessed remotely. Or you may want to allow only certain users to be able
to invoke them. The REST Operation filters provide an extension point where you can register such security rules on what operations are exposed
and for which users.

Here is an example on how to write such an extension:

<extension target="org.nuxeo.ecm.automation.server.AutomationServer" point="bindings">
 <binding name="Document.Delete" disabled="true"/>
 <binding name="audit" chain="true">
 <administrator>true</administrator>
 <secure>true</secure>
 <groups>members</groups>
 </binding>
</extension>

The above code is contributing two REST bindings - one for the atomic operation Document.Delete which is completely disabled (by using the di
 parameter) and the second one is defining a security rule for the operation chain named .sable audit

You notice the usage of the attribute which must be set to true every time a binding refer to an operation chain and not to an atomicchain
operation.

The second binding installs a guard that allows only requests made by an user or by users from the group theadministrator member AND

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

444
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

1.
2.

3.
4.

request should be made over a secured channel like HTTPS.

Here is the complete of attributes and elements you can use in the extension:

name - the operation or operation chain main that should be protected.
chain - true if the name refer to an operation chain, false otherwise (the default is false)
disabled - whether or not to completely disable the operation from Rest access. The default is false. If you put this flag on true then all
the other security rules will be ignored.
administrator - possible values are "true" or "false". The default is false. If set to true the operation is allowed if the user is an
administrator.
groups - a comma separated list of groups that the user should be member of. If both administrator and groups are specified the user
must eb either from a group either an administrator.
secure - "true" or "false". Default is false. If true the request must be done through a secured channel like HTTPS. If this guard is used
the connection be secured - so that even if the groups guard matched the operation is not accessible if the connection is notmust
secured.

Using the REST API - Examples

This section explain how to use automation REST calls using raw HTTP requests and response - this page is more theory than concrete
examples. You can check concrete examples using different HTTP clients to here:

PHP Automation Client
Using a Python client
Using cURL
Using Java API
Using Nuxeo Automation Client

Raw HTTP examples

Here is a complete example on using automation service. This example will do the following:

get the automation registry
set a blob on an existing document (let say "/default-domain/workspaces/myws/file") by forcing the server to avoid returning back the
blob.
get the same document with all the data inside (all the schemas)
download the content of the blob we set at step 2. (and using the information available in the document retrieved at step 3.)

1. Get the automation registry

REQUEST:

GET /automation HTTP/1.1
Accept: application/json+nxautomation
Host: localhost:8080

RESPONSE:

HTTP/1.1 200 OK
Content-Type: application/json+nxautomation

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

445
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

{
 "operations": [
 {
 "id" : "Blob.Attach",
 "label": "Attach File",
 "category": "Files",
 "description": "Attach the input file to the document given as a parameter. If
the xpath points to a blob list then the blob is appended to the list, otherwise the
xpath should point to a blob property. If the save parameter is set the document
modification will be automatically saved. Return the blob.",
 "url": "Blob.Attach",
 "signature": ["blob", "blob"],
 "params": [...]
 },
 ... // other operation follows here
],
 "chains" : [
 // a list of operation chains (definition is identical to regular operations)
]
}

2. Upload a blob into a File document: "/default-domain/workspaces/myws/file"

See the header to avoid the blob being returned by the server.X-NXVoidOperation

REQUEST:

POST /automation/Blob.Attach HTTP/1.1
Accept: application/json+nxentity, */*
Content-Type: multipart/related;
 boundary="----=_Part_0_130438955.1274713628403";
type="application/json+nxrequest"; start="request"
Authorization: Basic QWRtaW5pc3RyYXRvcjpBZG1pbmlzdHJhdG9y
X-NXVoidOperation: true
Host: localhost:8080

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

446
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

------=_Part_0_130438955.1274713628403
Content-Type: application/json+nxrequest; charset=UTF-8
Content-Transfer-Encoding: 8bit
Content-ID: request
Content-Length: 75

{"params":{"document":"/default-domain/workspaces/myws/file"},"context":{}}

------=_Part_0_130438955.1274713628403
Content-Type: image/jpeg
Content-Transfer-Encoding: binary
Content-Disposition: attachment; filename=test.jpg
Content-ID: input

[binary data comes here]

------=_Part_0_130438955.1274713628403--

RESPONSE: 204
3. Get the document data where we uploaded the blob

(see X-NXDocumentProperties header used to specify that all the document data (schemas) should be returned)

REQUEST:

POST /automation/Document.Fetch HTTP/1.1
Accept: application/json+nxentity, */*
Content-Type: application/json+nxrequest; charset=UTF-8
Authorization: Basic QWRtaW5pc3RyYXRvcjpBZG1pbmlzdHJhdG9y
X-NXDocumentProperties: *
Host: localhost:8080

{"params":{"value":"/default-domain/workspaces/myws/file"},"context":{}}

RESPONSE:

HTTP/1.1 200 OK
Content-Type: application/json+nxentity
Content-Length: 1121

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

447
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

{
 "entity-type": "document",
 "uid": "96bfb9cb-a13d-48a2-9bbd-9341fcf24801",
 "path": "/default-domain/workspaces/myws/file",
 "type": "File",
 "state": "project",
 "title": "file",
 "lastModified": "2010-05-24T15:07:08Z",
 "properties": {
 "uid:uid": null,
 "uid:minor_version": "0",
 "uid:major_version": "1",
 "dc:creator": "Administrator",
 "dc:contributors": ["Administrator"],
 "dc:source": null,
 "dc:created": "2010-05-22T08:42:56Z",
 "dc:description": "",
 "dc:rights": null,
 "dc:subjects": [],
 "dc:valid": null,
 "dc:format": null,
 "dc:issued": null,
 "dc:modified": "2010-05-24T15:07:08Z",
 "dc:coverage": null,
 "dc:language": null,
 "dc:expired": null,
 "dc:title": "file",
 "files:files": [],
 "common:icon": null,
 "common:icon-expanded": null,
 "common:size": null,
 "file:content": {
 "name": "test.jpg",
 "mime-type": "image/jpeg",
 "encoding": null,
 "digest": null,
 "length": "290096",
 "data": "files/96bfb9cb-a13d-48a2-9bbd-9341fcf24801?path=%2Fcontent"
 },
 "file:filename": null
 }

4. Download the content of the blob we set at step 2.

You notice in the last result that the documents contains our blob and the "data" property points to a relative URL that can be used to download
the blob content.
Let's download it:

REQUEST:

GET /automation/files/96bfb9cb-a13d-48a2-9bbd-9341fcf24801?path=%2Fcontent HTTP/1.1
Authorization: Basic QWRtaW5pc3RyYXRvcjpBZG1pbmlzdHJhdG9y
Host: localhost:8080

RESPONSE:

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

448
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

HTTP/1.1 200 OK
Content-Type: image/jpeg
Content-Length: 290096
Content-Disposition: attachment; filename=test.jpg

[the blob raw data here]

PHP Automation Client

A php automation client is made available on github (). You can use it and ask for commithttps://github.com/nuxeo/nuxeo-automation-php-client
rights on the project if you want to improve it or fix a bug.

The project contains the library () and some samplehttps://github.com/nuxeo/nuxeo-automation-php-client/tree/master/NuxeoAutomationClient
use cases here ().https://github.com/nuxeo/nuxeo-automation-php-client/tree/master/tests

Queries / Chains

In this examples we are using the php automation client to demonstrate how to invoke remote operations.
The following example is executing a simple query against a remote server: SELECT * FROM Document. The server will return a JSON
document listing all selected documents.

$client = new PhpAutomationClient('http://localhost:8080/nuxeo/site/automation');

$session = $client->getSession('Administrator','Administrator');

$answer = $session->newRequest("Document.Query")->set('params', 'query', "SELECT *
FROM Document")->sendRequest();

$documentsArray = $answer->getDocumentList();
$value = sizeof($documentsArray);
echo '<table>';
echo '<tr><TH>uid</TH><TH>Path</TH>
<TH>Type</TH><TH>State</TH><TH>Title</TH><TH>Download as PDF</TH>';
for ($test = 0; $test < $value; $test ++){
 echo '<tr>';
 echo '<td> ' . current($documentsArray)->getUid() . '</td>';
 echo '<td> ' . current($documentsArray)->getPath() . '</td>';
 echo '<td> ' . current($documentsArray)->getType() . '</td>';
 echo '<td> ' . current($documentsArray)->getState() . '</td>';
 echo '<td> ' . current($documentsArray)->getTitle() . '</td>';
 echo '<td><form id="test" action="../tests/B5bis.php" method="post" >';
 echo '<input type="hidden" name="data" value="'.
 current($documentsArray)->getPath(). '"/>';
 echo '<input type="submit" value="download"/>';
 echo '</form></td></tr>';
 next($documentsArray);
}
echo '</table>';

The class phpAutomationClient allows you to open a session with the getSession (return a session instance). Then, from the session, you can
create a new request by using the same named function. The set function is used to configure your automation request, giving the chain or
operation to call as well as the loading params, context, and input parts. At last, you send the request with the sendRequest function.

You can see here how to use the getters in order to retrieve information from the Document object, built from the request answer.

http://doc.nuxeo.com/x/GATF
https://github.com/nuxeo/nuxeo-automation-php-client
https://github.com/nuxeo/nuxeo-automation-php-client/tree/master/NuxeoAutomationClient
https://github.com/nuxeo/nuxeo-automation-php-client/tree/master/tests

 Nuxeo Enterprise Platform 5.4 Documentation

449
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

Using blobs

Attach Blob

In order to attach a blob, we have to send a Multipart Request to Nuxeo. The first part of the request will contain the body of the request (params,
context ...) and the second part will contain the blob (as an input).

$client = new PhpAutomationClient('http://localhost:8080/nuxeo/site/automation');

$session = $client->getSession('Administrator','Administrator');

$answer = $session->newRequest("Blob.Attach")->set('params', 'document', $path)
->loadBlob($blob, $blobtype)
->sendRequest();

That will attach the blob to an existing file. In order to send a blob, you use the loadBlob() function. If a blob is loaded using this function, the
sendRequet() function will automatically create a multipart request. If you load many blobs without noticing a precise localization in params, the
blobs will be send as an attachment of the file (not as a content).

Get a blob

in order to get a blog, you have to read the content of the 'tempfile' after using the appropriate headers.

$client = new PhpAutomationClient('http://localhost:8080/nuxeo/site/automation');

$session = $client->GetSession('Administrator','Administrator');

$answer = $session->NewRequest("Blob.Get")->Set('input', 'doc: ' .
$path)->SendRequest();

if (!isset($answer) OR $answer == false)
 echo '$answer is not set';
else{
 header('Content-Description: File Transfer');
 header('Content-Type: application/octet-stream');
 header('Content-Disposition: attachment; filename='.$filename.'.pdf');
 readfile('tempstream');
}

This will download the blob placed in file:content of the Nuxeo file designed by $path.

Using a Python client

We have developed a small Python library that implements the main functions of the JSON-RPC API.

You can check it out here:

http://blogs.nuxeo.com/fermigier/2010/08/a-sample-python-library-for-the-nuxeo-content-automation-jsonrpc-api.html

Here is the same example as the , this time using Python:cURL example

http://doc.nuxeo.com/x/GATF
http://blogs.nuxeo.com/fermigier/2010/08/a-sample-python-library-for-the-nuxeo-content-automation-jsonrpc-api.html

 Nuxeo Enterprise Platform 5.4 Documentation

450
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

#!/usr/bin/env python

import urllib2, base64

QUERY_URL = "http://localhost:8080/nuxeo/site/automation/Document.Query"
USER = 'Administrator'
PASSWD = 'Administrator'

auth = 'Basic %s' % base64.b64encode(USER + ":" + PASSWD).strip()
headers = {
 "Content-Type": "application/json+nxrequest",
 "Authorization": auth}
data = '{params: {"query": "SELECT * FROM Document"}, context : {}}'
req = urllib2.Request(QUERY_URL, data, headers)

resp = urllib2.urlopen(req)

print resp.read()

Here's a slightly more involved example, that illustrates:

how to use a for keeping session stateHTTPCookieProcessor
use of the parameterinput
a few different document-related commands (, ,)Document.Query Document.Create Document.Delete

#!/usr/bin/env python

import urllib2, base64, sys
import simplejson as json
from pprint import pprint

URL = "http://localhost:8080/nuxeo/site/automation/"
USER = 'Administrator'
PASSWD = 'Administrator'

cookie_processor = urllib2.HTTPCookieProcessor()
opener = urllib2.build_opener(cookie_processor)
urllib2.install_opener(opener)

def execute(command, input=None, **params):
 auth = 'Basic %s' % base64.b64encode(USER + ":" + PASSWD).strip()
 headers = {
 "Content-Type": "application/json+nxrequest",
 "Authorization": auth}
 d = {}
 if params:
 d['params'] = params
 if input:
 d['input'] = input
 if d:
 data = json.dumps(d)
 else:
 data = None
 req = urllib2.Request(URL + command, data, headers)

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

451
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

 try:
 resp = opener.open(req)
 except Exception, e:
 exc = json.load(e.fp)
 print exc['message']
 print exc['stack']
 sys.exit()
 s = resp.read()
 if s:
 return json.loads(s)
 else:
 return None

print "All automation commands:"
print
for op in execute("")['operations']:
 pprint(op)
 pprint
print

print "All documents in the repository:"
print
for doc in execute("Document.Query", query="SELECT * FROM Document")['entries']:
 print doc['path'], ":", doc['type']
print

print "Fetch workspaces root:"
doc = execute("Document.Fetch", value="/default-domain/workspaces")
pprint(doc)
print

print "Create a new doc:"
new_doc = execute("Document.Create", input="doc:" + doc['uid'], type="Workspace",
name="MyWS",
 properties="dc:title=My new workspace")
print

print "Delete new doc:"

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

452
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

execute("Document.Delete", input="doc:" + new_doc['uid'])
print

Using cURL

In this examples we are using the unix command line tool to demonstrate how to invoke remote operations.curl

The following example is executing a simple query against a remote server: . The server will return a JSONSELECT * FROM Document
document listing all selected documents.

curl -H 'Content-Type:application/json+nxrequest' -X POST \
 -d '{"params":{"query":"SELECT * FROM Document"},"context":{}}' \
 -u Administrator:Administrator
http://localhost:8080/nuxeo/site/automation/Document.Query

You can simplify the command by removing the attribute (since it is empty). And by removing quotes from JSON keys that don't need to"context"
be quoted:

curl -H 'Content-Type:application/json+nxrequest' -X POST \
 -d '{params:{query:"SELECT * FROM Document"}}' \
 -u Administrator:Administrator
http://localhost:8080/nuxeo/site/automation/Document.Query

Using Java API

This example demonstrate the usage of the API to invoke remote operations through Automation REST API.java.net

We will do the same as the - executing the query: .cURL example SELECT * FROM Document

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

453
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

 public static void main(String[] args) throws Exception {
 String username = "Administrator";
 String password = "Administrator";
 OutputStreamWriter wr = null;
 InputStream in = null;
 try {
 URL url = new
URL("http://localhost:8080/automation/nuxeo/site/Document.Query");
 URLConnection conn = url.openConnection();
 conn.setDoOutput(true);
 String auth = username + ":" + password;
 String encodedAuth = new sun.misc.BASE64Encoder().encode(auth.getBytes());
 conn.setRequestProperty("Authorization", "Basic " + encodedAuth);
 conn.setRequestProperty("Content-Type",
 "application/json+nxrequest");
 conn.setRequestProperty("Accept", "application/json+nxentity");
 wr = new OutputStreamWriter(conn.getOutputStream());
 wr.write("{params:{query:\"SELECT * FROM Document\"}}");
 wr.flush();

 // Get the response
 in = conn.getInputStream();
 StringBuffer buf = new StringBuffer();
 byte[] cbuf = new byte[1024 * 64];
 int r = in.read(cbuf);
 while (r > -1) {
 if (r > 0) {
 buf.append(new String(cbuf, 0, r));
 }
 r = in.read(cbuf);
 }
 System.out.println(buf.toString());
 } finally {
 if (wr != null) {
 wr.close();
 }
 if (in != null) {
 in.close();
 }
 }
 }

Of course you may create a specific API over the java.net to expose the REST automation mechanisms using a simplified API.

Instead of writing your own Java client API you should check the since it is already providing this.Nuxeo Automation Client

Using Nuxeo Automation Client

As we've seen in previous examples you can invoke a remote automation server using any language or HTTP tool you want. Nuxeo already
provides a high level client implementation for Java programmers. Using this client API simplifies your task since it handles all the protocol level
details.

To use the java automation client you need to put a dependency on the following maven artifact:

You may notice the usage of - its usage is not recommended since it is a SUN internal utility class.sun.misc.BASE64Encoder

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

454
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

<dependency>
 <groupId>org.nuxeo.ecm.automation</groupId>
 <artifactId>nuxeo-automation-client</artifactId>
 <version>5.4-SNAPSHOT</version>
</dependency>

For a direct download, see .https://maven.nuxeo.org/

The client library depends on:

net.sf.json-lib:json-lib, - for JSON supportnet.sf.ezmorph:ezmorph
org.apache.httpcomponents:httpcore, - for HTTP supportorg.apache.httpcomponents:httpclient
javax.mail - for multipart content support

Query example

Here is the same example as the one in - execute the " query against a remote automationJava API example SELECT * FROM Document"
server:

public static void main(String[] args) throws Exception {
 HttpAutomationClient client = new HttpAutomationClient(
 "http://localhost:8080/nuxeo/site/automation");

 Session session = client.getSession("Administrator", "Administrator");
 Documents docs = (Documents) session.newRequest("Document.Query").set(
 "query", "SELECT * FROM Document").execute();
 System.out.println(docs);

 client.shutdown();
}

You can see the code above has 3 distinctive parts:

1. Opening a connection.
2. Invoking remote operations
3. Destroying the client.

So before using the Automation Client you should first create a new client that is connecting to a remote address you can specify through the
constructor URL argument. (As the remote server URL you should use the URL of the Automation service):

// create a new client instance
HttpAutomationClient client = new
HttpAutomationClient("http://localhost:8080/nuxeo/site/automation");

No connection to the remote service is made at this step. The automation service definition will be downloaded the first time you create a session.
A local registry of available operations are created from the service definition sent by the server.

This documentation applies for versions greater or equal to .nuxeo-automation-client 5.4-SNAPSHOT

You can see using the automation client is mush easier than writing yourself all the protocol details as in the previous example Using
Java API

The local registry of operations contains all operations on the server - but you can invoke only operations that are accessible to your
user - otherwise a 404 (operation not found) will be sent by the server)

http://doc.nuxeo.com/x/GATF
https://maven.nuxeo.org/nexus/index.html#nexus-search;gav~nuxeo-automation-client~~

 Nuxeo Enterprise Platform 5.4 Documentation

455
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

Once you created a client instance you create a new session to be able to start to invoke remote operations. When creating a session youmust
should pass the credentials to be used to authenticate against the server.

So you create a new session by calling:

Session session = client.getSession("Administrator", "Administrator");

This will authenticates you onto the server using the basic authentication scheme. If needed, you can use another authentication
scheme by setting an interceptor.

client.setInterceptor(new PortalSSOAuthInterceptor("nuxeo5secretkey",
"Administrator"));
Session session = client.getSession();

Using a session you can now invoke remote operations. To create a new invocation request you should pass in the right operation or chain ID:

OperationRequest request = session.newRequest("Document.Query");

and then populate the request with all the required arguments:

request.set("query", "SELECT * FROM Document");

You can see in our example you have to specify only the argument. If you have more arguments you call in turn the method for eachquery set
of these arguments. If you need to specify execution context parameters you can use method. The same, ifrequest.setContextProperty
you need to specify custom HTTP headers you can use the method.request.setHeader

After having filled all the required request information you can execute the request by calling the execute method.

Object result = request.execute();

Executing a request will either thrown an exception or return the result. The result object can be null if the operation has no result (i.e. a void
operation) - otherwise a Java object is returned. The JSON result is automatically decoded into a proper Java object. The following objects are
supported as operation results:

Document - a document object
Documents - a list of documents
Blob - a file
Blobs - a file list

In case the operation invocation fails - an exception described by a JSON entity will be sent by the server and the client will automatically decode
it into a real java exception derived from .org.nuxeo.ecm.automation.client.jaxrs.RemoteException

The query example is pretty simply. The query operation doesn't need an input object to be executed. (i.e. the input can be null). But most
operations require an input. In that case you must call method to set the input. We will see more about this in the followingrequest.setInput

The client API provides both synchronous and asynchronous execution.

Before sending the request the client will check the operation arguments to see if they match the operation definition and will throw an
exception if some required argument is missing. The request will be sent only after validation successfully completes.

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

456
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

examples.

If you prefer a most compact notation you can use the way of calling methods:fluent interface

Object result = session.newRequest("OperationId").set("var1", "val1").set("var2",
"val2").execute();

When you are done with the client you must call the method to free any resource held by the client. Usually this is doneclient.disconnect
only once when the client application is shutdown. Creating new client instances and destroying them may be costly so you should use a
singleton client instance and use it from different threads (which is safe).

Blob upload example

In this example we assume we already have a session instance.
The example will create a new File document into the root document and then will upload a file into. Finally we will download back this file."/"
First get the root document and create a new File document at location /myfile

 // get the root
 Document root = (Document) session.newRequest("Document.Fetch").set(
 "value", "/").execute();
 // create a file document
 session.newRequest("Document.Create").setInput(root).set("type", "File").set(
 "name", "myfile").set("properties", "dc:title=My File").execute();

Now get the file to upload and put it into the newly created document.

 File file = getTheFileToUpload();
 FileBlob fb = new FileBlob(file);
 fb.setMimeType("text/xml");
 // uploading a file will return null since we used HEADER_NX_VOIDOP
 session.newRequest("Blob.Attach").setHeader(
 Constants.HEADER_NX_VOIDOP, "true").setInput(fb)
 .set("document", "/myfile").execute();

The last call will return since the header was used. This is to avoid receiving back from the server the blobexecute null HEADER_NX_VOIDOP
we just uploaded.

Now get the the file document where the blob was uploaded. Then retrieve the blob remote URL from the document metadata. We can use this
URL to download the blob.

If you need different logins then creating one session per login. A session is thread safe.

Note the usage of method. This is to specify that the create operation must be executed in the context of the rootsetInput()
document - so the new document will be created under the root document.
Also you can notice that the input object is a Document instance.

Note that to upload a file we need to use a object that wrap the file to upload.Blob

http://doc.nuxeo.com/x/GATF
http://en.wikipedia.org/wiki/Fluent_interface

 Nuxeo Enterprise Platform 5.4 Documentation

457
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

 // get the file document where blob was attached
 Document doc = (Document) session.newRequest(
 "Document.Fetch").setHeader(
 Constants.HEADER_NX_SCHEMAS, "*").set("value", "/myfile").execute();
 // get the file content property
 PropertyMap map = doc.getProperties().getMap("file:content");
 // get the data URL
 String path = map.getString("data");

You can see we used the special header to specify we want all properties of the document to be included in the response.HEADER_NX_SCHEMAS

Now download the file located on the server under the we retrieved from the document properties:path

 // download the file from its remote location
 blob = (FileBlob) session.getFile(path);
 // ... do something with the file
 // at the end delete the temporary file
 blob.getFile().delete();

We can do the same by invoking the operation.Blob.Get

 // now test the GetBlob operation on the same blob
 blob = (FileBlob) session.newRequest("Blob.Get").setInput(doc).set(
 "xpath", "file:content").execute();
 // ... do something with the file
 // at the end delete the temporary file
 blob.getFile().delete();

The complete example

Here is the complete code of the example. For more examples, see the unit tests in project.nuxeo-automation-server

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

458
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

 // Get The Root
 Document root = (Document) session.newRequest("Document.Fetch").set(
 "value", "/").execute();
 // Create a File Document
 session.newRequest("Document.Create").setInput(root).set("type", "File").set(
 "name", "myfile").set("properties", "dc:title=My File").execute();

 // Upload The file
 File file = getTheFileToUpload();
 FileBlob fb = new FileBlob(file);
 fb.setMimeType("text/xml");
 // uploading a file will return null since we used HEADER_NX_VOIDOP
 session.newRequest("Blob.Attach").setHeader(
 Constants.HEADER_NX_VOIDOP, "true").setInput(fb)
 .set("document", "/myfile").execute();

 // Get the file document where blob was attached
 Document doc = (Document) session.newRequest(
 "Document.Fetch").setHeader(
 Constants.HEADER_NX_SCHEMAS, "*").set("value", "/myfile").execute();
 // get the file content property
 PropertyMap map = doc.getProperties().getMap("file:content");
 // get the data URL
 String path = map.getString("data");

 // download the file from its remote location
 blob = (FileBlob) session.getFile(path);
 // ... do something with the file
 // at the end delete the temporary file
 blob.getFile().delete();

OpenSocial, OAuth and Nuxeo EP

About Opensocial

OpenSocial is a community standard managed by the . Several (Google, IBM, SAP, Atlassian ...) areOpenSocial foundation major companies
involved in the OpenSocial standard.
You can consult the full , but at a glance OpenSocial scope includes :OpenSocial specification here

JavaScript/Html gadgets

OpenSocial gadgets are small HTML/JavaScript applications that consume data using REST WebServices.

The idea is similar to the JSR 168 portlet with some differences :

rendering is mainly done on the client side (Browser side)
OpenSocial gadgets are independant of the server side technology (Java, Php, Python, .Net ...)
deploying a new gadget is simply referencing a URL that contains the XML gadget spec

Gadgets are run in a Container that is responsible for providing the gadget with the rendering environment and needed JavaScript APIs.

Rest WebServices

OpenSocial defines a set of Rest WebServices that must be implemented by compliant container.

The main services are:

http://doc.nuxeo.com/x/GATF
http://www.opensocial.org/
http://www.opensocial.org/page/enterprise-opensocial-1
http://www.opensocial.org/specs

 Nuxeo Enterprise Platform 5.4 Documentation

459
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

App Data service : service to store user specfic data for each gadget / app
Groups service : manage relationship between users. (each user has the ability to manage his own groups : friends, coworkers, ...)
Activity service : track user activity
Person service : standard access to the users of the system
Message service : simple messaging system

These web services provide the "social part" of the OpenSocial technology.

Manage authentication and security of data accesses

In OpenSocial there are usually 3 actors:

the user : the human looking at the gadget inside his browser
the container : the "server" providing the container page where the gadgets are rendered
the service provider : the server providing the Rest service accessed by the Gadget

Additionally, the AppId (i.e. the gadget) may be taken into account.

Also, OpenSocial differentiate 2 types of user identify:

the viewer : the user in front of the browser
the owner : the user owning the page that contains the gadget

If you take the example of a gadget that display inside Nuxeo your emails from GMail :

you are the user (OpenSocial viewer and OpenSocial owner)
Nuxeo is the container
GMail is the service provider
the GMail gadget is the AppId

Because Gadgets are HTML/Javascript, the gadget can not call directly GMail (Cross site scripting issue), so the container will proxy all calls from
to gadget to GMail.

So, the container (here Nuxeo) will manage REST call proxying :

handling caching if needed
handling security

The security part is not trivial because in OpenSocial contexte there are 3 constraints :

you need to delegate authentication to a server
(i.e. let Nuxeo connect to GMail on behalf of me)
your GMail and Nuxeo account may be completely unrelated
(not the same login for example)
you may not want to let Nuxeo access all your GMail data, but only a subset

In order to manage theses requirements OpenSocial relies on .OAuth

Nuxeo EP server can be used both as an OAuth Service consumer or as an OAuth Service provider.

You can find more details about OAuth and it's integration in Nuxeo later in this page.

What can it be used for

Dashboard / Portal use case

The most direct use cases is to use OpenSocial gadgets to adress Dashboard / Portal use case.

This is currently the default usage of OpenSocial within Nuxeo CAP / DM.

For that, we have created some simple and extensible gadgets :

My recent documents
My Workspaces
My Tasks
...

The user can then use the Nuxeo's dashboard to have a quick overview of it's activity inside Nuxeo platform.

Using OpenSocial gadgets to do so is interesting because :

Let users control their Dashboards.

Depending on the security policy, the user is able to customize it's dashboard

http://doc.nuxeo.com/x/GATF
http://oauth.net/

 Nuxeo Enterprise Platform 5.4 Documentation

460
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

add / remove gadgets
change gadgets configurations

Leverage an open standard

Gadgets can come from several différent services providers

My Tasks on Nuxeo
My Task on Jira
My Google calendar events

More and more application are supporting OpenSocial:

Google Apps
(also provides an OpenSocial container in GMail and iGoogle)
Atlassian Jira and Confluence
(that are also OpenSocial container)
SAP
SalesForce.com
Social Oriented services like LinkedIn, MySpace, Hi5, Orkut ...
...

So you can add external gadgets to Nuxeo's Dashboard, but you can also use an external OpenSocial Dashboard provided by an other
application and use Nuxeo's gadgets from inside this container.

Manage user identity

Because OpenSocial relies on OAuth you can have a narrow controle of what service may be used and what scope of data you accept to share
between the applications.

Simple deployment

Deploying an OpenSocial gadget in a container is as simple as giving a new Url.

Easy contextual information integration

OpenSocial gadgets can also be used to provide a simple and light integration solution between 2 applications.

For exaample, you can :

display some informations comming from SAP next to the Invoice Document in Nuxeo
diplay links to related Nuxeo Documents from within a confluence wiki page
display specification documents (Stored in Nuxeo) from withing the Jira Issue

An more generally, if you have Enterprise wide Rest WebService (like Contacts managements, Calendar management ...) you can expose them
via OpenSocial gadgets so that theses services are accessible to users of all OpenSocial aware applications.

Social network management

Because OpenSocial standardize a set of Social oriented services, you can easily leverage the data from all OpenSocial aware applications.
For example you can have an aggregated view on the activity stream.

In the context of Document Management, Collaboration and KM, Social APIs really makes sense :

manage communities
manage activity
manage user skils
...

OAuth in Nuxeo EP

Starting with 5.4.1, Nuxeo EP provides full support for OAuth.

Nuxeo as a service provider

You may want to use Nuxeo as an OAuth Service provider :

if you have an OpenSocial gadget that uses a REST service from Nuxeo
if you have a external application that uses a REST service from Nuxeo

Unless the service consumer is a gadget directly hosted inside Nuxeo, you will need to do some configuration at Nuxeo's level to define how you
want the external consumer to have access to Nuxeo.

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

461
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

Nuxeo as a service consumer

If you need to access an external REST service from within Nuxeo, you may want to use OAuth to manage the authentication.

If you use this external service from within an OpenSocial gadget, you will need to use OAuth.

Unless the service you want to consumer is hosted by your Nuxeo instance, you will need to do some configuration do define how Nuxeo must
access this external service.

For more details about OAuth support in Nuxeo, please see the .dedicated section

Nuxeo Automation REST services

OpenSocial gadgets typically use REST services to fetch the data from the service provider.

When Nuxeo is the service provider, the recommended target API is :Nuxeo Automation

provide a solution to easily have custom REST Apis without having to write code
(Using Nuxeo Studio)
common access point for all REST services
(All Operation and Chains can be called the same way)
native support for JSON marshaling
(means easy integration in the Gadget JS)
built-in samples in Nuxeo Gadget
(see below)

If you have already built custom automation chains to expose a high level API on top of Nuxeo, you can easily expose theses services via an
OpenSocial gadget.

Gadgets in Nuxeo EP

Apache Shindig, GWT and WebEngine

OpenSocial integration is Nuxeo is based on project.Apache Shindig

Nuxeo OpenSocial modules were originally contributed by Leroy Merlin and includes :

Shindig integration
a WebEngine based Gadget spec webapp (/nuxeo/site/gadgets/)
a GWT based gadget container
a service to contribute new gadgets

Gadget spec generation

Gadget Spec is the XML file defining the Gadget.

It's a static XML file that :

describes the gadget
list the required features of the gadget
contains the translation resources
contains the authentication informations
contains the Javascript files and HTML content
...

Inside Nuxeo, the Gadget Spec is dynamically generated from a FreeMarker template using WebEngine.

Using WebEngine and Freemarker to generate the spec add more flexibility and power :

Better reusability

Most of you gadgets will share some common content.

For Javascripts it's easy to manage, but for HTML and XML content it not that simple.

In order to avoid that issue, when writing a gadget spec in Nuxeo, you can use Freemarker includes that will be resolved :

locally to the gadget directory
globally in the webengine-gadget bundle (in skin/resources/ftl)

The same logic applies for JS et CSS resources that will be resolved :

locally to the gadget directory
in the gadget bundle

http://doc.nuxeo.com/x/GATF
https://doc.nuxeo.com/display/NXDOC53/Content+Automation
http://shindig.apache.org/
http://opensocial-resources.googlecode.com/svn/spec/1.0/Core-Gadget.xml

 Nuxeo Enterprise Platform 5.4 Documentation

462
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

globally in the webengine-gaget bundle (in skin/resources/scripts or skin/resources/css)

Better context management

When generating the GadgetSpec you need to take into account several parameters :

urls : resources URLs may be dependent of your config
Nuxeo host name may change
some resources are accessed from the client side (from the browser)
some resources are accessed from the server side (Server to Server communication)

Authentication : depending on the target Host of the gadget authentication config may change
you want to use 2 Legged integrated authentication when gadget is inside Nuxeo
you want to use 3 Legged authentication when gadget is hosted inside an external application

In order to address these problem the Freemarker template is rendered against the fellowing context :

variable name description

spec gives access to the objectInternalGadgetDescriptor

serverSideBaseUrl Server side url used to access the Nuxeo server

clientSideBaseUrl Client side url used to access the Nuxeo server

contextPath Context path of the Nuxeo WebApp (i.e. nuxeo)

insideNuxeo Boolean flag used to tell if gadget will be renderd inside Nuxeo or in
an external application

jsContext Automatically generated String that can be used to dump the
FreeMarker context in Javascript

i18n Access to a Java Helper class to manage i18n (see later)

specDirectoryUrl base URL for accessing the gadget virtual directory

contextHelper Access to a Java Helper class to manage the "Nuxeo context" of the
gadget if needed : Repository name, domain path ...

The inside flag is "automatically" determined by Nuxeo, but in case the consumer application and Nuxeo are on the same host (i.e.
communication via locahost or 127.0.0.1), you may force the external mode by adding external=true to the gadget spec url :

http://127.0.0.1:8080/nuxeo/site/gadgets/userworkspaces/userworkspaces.xml?external=tr
ue

All request parameters you may pass in the gadgetSpec url will also be available at the root of the freemarker context.

Integrated internationalization

GadgetSpec needs to provide XML files for all translations.

<Locale lang="fr" messages="/nuxeo/site/gadgets/automation/messages_fr.xml"/>
<Locale lang="de" messages="/nuxeo/site/gadgets/automation/messages_de.xml"/>
<Locale lang="it" messages="/nuxeo/site/gadgets/automation/messages_it.xml"/>
<Locale lang="es" messages="/nuxeo/site/gadgets/automation/messages_es.xml"/>
<Locale lang="pt" messages="/nuxeo/site/gadgets/automation/messages_pt.xml"/>
<Locale lang="pl" messages="/nuxeo/site/gadgets/automation/messages_pl.xml"/>

So, of course you can use static resources for these translation files.

The main problem is that in this case you can not leverage the existing translations in Nuxeo and it's hard to contribute new translations.

In order to avoid that, Nuxeo proposes a dynamic translation mode, where messages files are dynamically generated based on the standard
messages files used in the JSF webapp.

http://doc.nuxeo.com/x/GATF
http://community.nuxeo.com/api/nuxeo/5.4/javadoc/org/nuxeo/opensocial/gadgets/service/InternalGadgetDescriptor.html

 Nuxeo Enterprise Platform 5.4 Documentation

463
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

To activate the dynamic i18n features you need :

to provide a dynamic_messages.properties file that will list the needed label codes and associated default values
use the include that will automatically generate the needed translation files and associated entries in the XML Spec

<#include "dynamic-translations.ftl"/>

Dynamic management of Authentication

As explained earlier, depending of the target context, the Spec needs to define OAuth 3 legged or 2 Legged.
You can do it by hand, or you can use the oauth include :

 <#include "default-oauth-prefs.ftl"/>

Gadget Toolbox

In order to make Gadget creation easier, Nuxeo provides some building blocks for common features :

Context management
Automation REST calls
Documents list display

These building blocks are composed of Freemarker includes, JavaScripts files and CSS files.
Thanks to these building blocks, writing a full featured gadgets base on Automation API is very simple.

<?xml version="1.0" encoding="UTF-8"?>
<Module>
 <ModulePrefs title="Nuxeo Automation"
 description="Simple gadget that uses Nuxeo REST Automation API "
 author="tdeprat" author_email="tdelprat@nuxeo.com"
 height="420">
 <#include "dynamic-translations.ftl"/>
 <Require feature="dynamic-height" />
 <#include "default-oauth-prefs.ftl"/>
 </ModulePrefs>
 <Content type="html">
<![CDATA[
<html>
 <head>
 <link rel="stylesheet" type="text/css" href="${specDirectoryUrl}documentlists.css"/>
 <!- insert JS Context ->
 ${jsContext}
 <!-- insert JS Automation script -->
 <script src="${specDirectoryUrl}default-automation-request.js"></script>
 <!-- insert default document list display script -->
 <script src="${specDirectoryUrl}default-documentlist-display.js"></script>
 <script>
 var prefs = new _IG_Prefs(_MODULE_ID_);
 // configure Automation REST call
 var NXRequestParams={ operationId : 'Document.PageProvider', // id of
operation or chain to execute
 operationParams : { query : "Select * from Document", pageSize : 5}, //
parameters for the chain or operation
 operationContext : {}, // context
 operationDocumentProperties : "common,dublincore", // schema

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

464
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

that must be fetched from resulting documents
 entityType : 'documents', // result
type : only document is supported for now
 usePagination : true, // manage
pagination or not
 displayMethod : displayDocumentList, // js
method used to display the result
 displayColumns : [{ type: 'builtin', field: 'icon'}, //
minimalist layout listing
 { type: 'builtin', field: 'titleWithLink', label:
'__MSG_label.dublincore.title__'},
 { type: 'date', field: 'dc:modified', label:
'__MSG_label.dublincore.modified__'},
 { type: 'text', field: 'dc:creator', label:
'__MSG_label.dublincore.creator__'}
]
 };
 // execute automation request onload

gadgets.util.registerOnLoadHandler(function(){doAutomationRequest(NXRequestParams);});
 </script>
 </head>
 <body>
 <#include "default-documentlist-layout.ftl"/>
 <#include "default-request-controls.ftl"/>
 </body>
</html>
]]>

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

465
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

 </Content>
</Module>

OpenSocial configuration

OpenSocial in Nuxeo can be configured throug the GWT Container parameters.

GWT Container parameters

There are some parameters you can pass to the GWT container, through the getGwtParams() function, to customize the way it works.

Here are the definitions of the different parameters:

dndValidation: if the container should wait the validation of the Drag'n Drop before doing the actual move, otherwis'true' 'false'
e. If the parameter is not present, default to .'false'

showPreferences: if the gadget preferences need to be displayed after adding a gadget, otherwise. If the parameter'true' 'false'
is not present, default to .'true'

resetGadgetTitle: if the gadget title needs to be after its addition to the container, otherwise. If the parameter is'true' 'false'
not present, default to .'true'

userLanguage: this parameter is used to store the user language. The user language is used to internationalize the gadgets title by
creating the corresponding Locale. If this parameter is not present, we fallback on the default Locale when trying to retrieve the label.

Repository access

Nuxeo EP currently supports 3 protocols to expose the document repository:

CMIS,
WebDAV,
the protocol (only the sub set used by MS Office and MS Explorer).Windows Sharepoint Services

Compared to the Service APIs, these protocols won't give you access to services but directly to the content.

Depending on the chosen protocol, your access to Nuxeo Content will be more or less powerful:

CMIS gives you access to a big subset of the data managed by Nuxeo,
WebDav and WSS mainly map Nuxeo's content as a file-system (with all the associated limitations).

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

466
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

These protocols may be useful in several use cases:

Desktop integration,
Allow a portal or a WCM solution to access Nuxeo's content.

CMIS for Nuxeo

CMIS is the OASIS specification for content management interoperability. It allows client and servers to talk together in HTTP (SOAP or
REST/AtomPub) using a unified domain model. The latest published is .CMIS 1.0 Committee Specification 01

Outline of this document:

Status
Versions
Online demo
Downloads

Nuxeo DM release
Nuxeo Core Server release

Usage
AtomPub
SOAP
CMIS Clients
From Java code within a Nuxeo component

Documentation
Capabilities
Model mapping
Nuxeo specific System Properties
Source Code
Additional Resources

Status

Nuxeo supports CMIS through the following modules:

the library, maintained by Nuxeo and others, which is a general-purpose Java library allowing developersApache Chemistry OpenCMIS
to easily write CMIS clients and servers,
specific Nuxeo OpenCMIS connector bundles, allowing Nuxeo to be used as a CMIS server with the help of OpenCMIS.

Versions

The Nuxeo OpenCMIS connector supports the full CMIS 1.0 starting with Nuxeo EP 5.4. (A previous version of the connector based on an earlier
version of Apache Chemistry backend has been included by default in Nuxeo DM since Nuxeo EP 5.3.1.)

Online demo

A demo server has been set up for you to try Nuxeo with CMIS. You can try it here: (login: Administrator / password:http://cmis.demo.nuxeo.org/
Administrator).

The AtomPub service document is here: (same credentials).http://cmis.demo.nuxeo.org/nuxeo/atom/cmis
The SOAP WSDL for the repository service is here: http://cmis.demo.nuxeo.org/nuxeo/webservices/cmis/RepositoryService?wsdl

Downloads

Nuxeo DM release

The Nuxeo DM 5.4 release includes the CMIS connector by default. You can get it from here:
http://nuxeo.com/en/downloads/download-dm-form

Nuxeo Core Server release

We're now also providing an extra lightweight packaging of a Nuxeo repository that only includes CMIS access to the repository (no web UI at all).

You can grab it here: http://www.nuxeo.com/en/downloads/download-ep-form

Usage

Make sure that the Nuxeo server is started: check that there are no ERRORs in the startup logs and that you can normally connect to your server
using a browser, at .http://localhost:8080/nuxeo

AtomPub

http://doc.nuxeo.com/x/GATF
https://doc.nuxeo.com/display/GLOS/CMIS
http://docs.oasis-open.org/cmis/CMIS/v1.0/cs01/cmis-spec-v1.0.html
http://chemistry.apache.org/java/opencmis.html
http://cmis.demo.nuxeo.org/
http://cmis.demo.nuxeo.org/nuxeo/atom/cmis
http://cmis.demo.nuxeo.org/nuxeo/webservices/cmis/RepositoryService?wsdl
http://nuxeo.com/en/downloads/download-dm-form
http://www.nuxeo.com/en/downloads/download-ep-form
http://localhost:8080/nuxeo

 Nuxeo Enterprise Platform 5.4 Documentation

467
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

You can use a CMIS 1.0 AtomPub client and point it at .http://localhost:8080/nuxeo/atom/cmis

If you want to check the AtomPub XML returned using the command line, this can be done using or :curl wget

curl -u Administrator:Administrator http://localhost:8080/nuxeo/atom/cmis

To do a query you can do:

curl -u Administrator:Administrator
"http://localhost:8080/nuxeo/atom/cmis/default/query?q=SELECT+cmis:objectId,+dc:title+
FROM+cmis:folder+WHERE+dc:title+=+'Workspaces'"

You should probably pipe this through if you want a readable output:tidy

... | tidy -q -xml -indent -wrap 999

SOAP

The following SOAP endpoints are available:

http://localhost:8080/nuxeo/webservices/cmis/RepositoryService
http://localhost:8080/nuxeo/webservices/cmis/DiscoveryService
http://localhost:8080/nuxeo/webservices/cmis/ObjectService
http://localhost:8080/nuxeo/webservices/cmis/NavigationService
http://localhost:8080/nuxeo/webservices/cmis/VersioningService
http://localhost:8080/nuxeo/webservices/cmis/RelationshipService
http://localhost:8080/nuxeo/webservices/cmis/MultiFilingService
http://localhost:8080/nuxeo/webservices/cmis/ACLService
http://localhost:8080/nuxeo/webservices/cmis/PolicyService

Note that most SOAP CMIS clients are configured by using just the first URL (the one about RepositoryService), the others are derived from it by
changing the suffix.

Authentication is done using Web Services Security (WSS) UsernameToken.

Here is a working example of a SOAP message to the DiscoveryService:

The above AtomPub URLs are correct for Nuxeo EP 5.4, but note that previous versions of Nuxeo (5.3.1 and 5.3.2) used different URLs
(instead of).site/cmis atom/cmis/default

http://doc.nuxeo.com/x/GATF
http://localhost:8080/nuxeo/atom/cmis
http://localhost:8080/nuxeo/webservices/cmis/RepositoryService
http://localhost:8080/nuxeo/webservices/cmis/DiscoveryService
http://localhost:8080/nuxeo/webservices/cmis/ObjectService
http://localhost:8080/nuxeo/webservices/cmis/NavigationService
http://localhost:8080/nuxeo/webservices/cmis/VersioningService
http://localhost:8080/nuxeo/webservices/cmis/RelationshipService
http://localhost:8080/nuxeo/webservices/cmis/MultiFilingService
http://localhost:8080/nuxeo/webservices/cmis/ACLService
http://localhost:8080/nuxeo/webservices/cmis/PolicyService

 Nuxeo Enterprise Platform 5.4 Documentation

468
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ns="http://docs.oasis-open.org/ns/cmis/messaging/200908/">
 <soapenv:Header>
 <Security
xmlns="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.x
sd">
 <UsernameToken>
 <Username>Administrator</Username>
 <Password>Administrator</Password>
 </UsernameToken>
 </Security>
 </soapenv:Header>
 <soapenv:Body>
 <ns:query>
 <ns:repositoryId>default</ns:repositoryId>
 <ns:statement>SELECT cmis:objectid, dc:title FROM cmis:document WHERE dc:title =
'Workspaces'</ns:statement>
 <ns:maxItems>20</ns:maxItems>
 <ns:skipCount>0</ns:skipCount>
 </ns:query>
 </soapenv:Body>
</soapenv:Envelope>

CMIS Clients

Several free clients for CMIS 1.0 are available.

The best one is the , part of OpenCMIS.CMIS Workbench

Other older clients are available:

http://code.google.com/p/cmisspaces/ is an Adobe AIR client (you will need to change the cmisUrl parameter in the file CMISSpacesCon
 to point it to your Nuxeo server),fig.xml

http://code.google.com/p/cmis-explorer/ is another Adobe AIR client,

A command-line shell is also available:

CMIS Shell (of most recent version)direct 2MB download

And of course you can use the to produce your own client (Java, Python, PHP, .NET). Documentation and sample for usingChemistry libraries
OpenCMIS libraries can be found on the with also and .OpenCMIS developer wiki example code howtos

From Java code within a Nuxeo component

To create, delete or modify documents, folders and relations just use the regular API of Nuxeo. To perform CMISQL queries (forCoreSession
instance to be able to perform that are not supported by the default query language, have a look at the following entry in theJOIN NXQL
Knowledge Base: .Using CMISQL from Java

Documentation

You can browse or download (1.3 MB).the CMIS 1.0 HTML version CMIS 1.0 (PDF)

Capabilities

The Nuxeo OpenCMIS connector implements the following capabilities from the specification (in Nuxeo 5.4.2):

Get descendants supported Yes

Get folder tree supported Yes

Unfiling supported No

Multifiling supported No

http://doc.nuxeo.com/x/GATF
http://chemistry.apache.org/java/developing/tools/dev-tools-workbench.html
http://code.google.com/p/cmisspaces/
http://code.google.com/p/cmis-explorer/
http://blogs.nuxeo.com/fermigier/2010/01/announcing-cmis-shell-cmissh-commandline-client-cmis.html
http://www.nuxeo.org/static/cmis/cmissh-20100312.zip
http://chemistry.apache.org/
http://chemistry.apache.org/java/developing/index.html
http://chemistry.apache.org/java/examples/index.html
http://chemistry.apache.org/java/how-to/index.html
https://doc.nuxeo.com/display/NXDOC/Using+CMISQL+from+Java
http://docs.oasis-open.org/cmis/CMIS/v1.0/cs01/cmis-spec-v1.0.html
http://docs.oasis-open.org/cmis/CMIS/v1.0/cs01/cmis-spec-v1.0.pdf

 Nuxeo Enterprise Platform 5.4 Documentation

469
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

Version-specific filing supported No

Query Both combined

Joins Inner and outer

All versions searchable Yes

PWC searchable Yes

PWC updatable Yes

Content stream updates PWC only

Renditions Read

Changes Object IDs only

ACLs None

Model mapping

The following describes how Nuxeo documents are mapped to CMIS objects and vice versa.

Only Nuxeo documents including the "dublincore" schema are visible in CMIS.
Proxy documents are not visible in CMIS (as of 5.4.1).
Secondary content streams are not visible as renditions (as of 5.4.1).

This mapping may change to be more comprehensive in future Nuxeo versions.

Nuxeo specific System Properties

Since Nuxeo EP 5.4.2

In addition to the system properties defined in the CMIS specification under the prefix, Nuxeo EP adds a couple of additional propertiescmis:
under the prefix:nuxeo:

nuxeo:isVersion: to distinguish between archived (read-only revision) and live documents (that can be edited)
nuxeo:lifecycleState: to access the lifecycle state of a document: by default only document in non state will be returneddeleted
in CMISQL queries unless and explicit predicate is specified in the clause of the query.nuxeo:lifecycleState WHERE
nuxeo:secondaryObjectTypeIds: make it possible to access the facets of a document. Those facet can be static (as defined in the
type definitions) or dynamic (each document instance can have declared facets).
nuxeo:contentStreamDigest: the low level, MD5 or SHA1 digest of blobs stored in the repository. The algorithm used to compute
the digest is dependent on the configuration of the component of the Nuxeo repository.BinaryManager

nuxeo:isVersion, and are properties that can be queried upon: they can benuxeo:lifecycleState nuxeo:secondaryObjectTypeIds
used in the clause of a CMISQL query. This is not yet the case for that can only be read in query resultsWHERE nuxeo:contentStreamDigest
or by introspecting the properties of the description of a document.ObjectData

Source Code

The Nuxeo OpenCMIS connector source code is available through Nuxeo's Mercurial server: .http://hg.nuxeo.org/addons/nuxeo-chemistry/

The Apache Chemistry OpenCMIS source code is available via Apache's Subversion server: https://svn.apache.org/repos/asf/chemistry/opencmi
.s/trunk

Additional Resources

CMIS: Overview of a Rapidly Evolving ECM Standard, presentation on SlideShare
CMIS and Apache Chemistry (ApacheCon 2010), presentation on SlideShare
Nuxeo World Session: CMIS - What's Next?, presentation on SlideShare

WebDAV

Nuxeo supports the WebDAV (protocol and thus enables you to create and edit OfficeWeb-based Distributed Authoring and Versioning)
documents stored in Nuxeo directly from the Windows or Mac OS X desktop, without having to go through your Nuxeo application.

The documentation about installation and usage of WebDAV can be found .here

WSS before Nuxeo 5.4.2

This page describes how WSS has been used in Nuxeo DM, since version 5.4.2 this has been replaced by the support.WebDAV

http://doc.nuxeo.com/x/GATF
http://hg.nuxeo.org/addons/nuxeo-chemistry/
https://svn.apache.org/repos/asf/chemistry/opencmis/trunk
https://svn.apache.org/repos/asf/chemistry/opencmis/trunk
http://www.slideshare.net/nuxeo/cmis-overview
http://www.slideshare.net/efge/cmis-and-apache-chemistry-apachecon-2010
http://www.slideshare.net/nuxeo/nuxeo-world-session-cmis-whats-next
https://doc.nuxeo.com/display/USERDOC/Working+with+WebDAV

 Nuxeo Enterprise Platform 5.4 Documentation

470
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

Windows SharePoint Services is a set of protocol that is used by Microsoft applications (mainly the Windows Explorer and MS Office) to access
content stored inside a SharePoint Team Services site.

Target Scope of WSS implementation in Nuxeo

The target scope of this implementation is:

Browse / Open / Save documents from MS Office 2003 / 2007
Browse / Open / Save documents from Explorer if MS Office 2003 / 2007 is installed
Display some meta-data informations in MS Office 2003 / 2007

Understanding the beast

WSS is not a complicated protocol, it's an aggregation of several protocols and different technologies.
In a lot of cases, finding the needed information was a complicated task.

Not because there is no documentation but because there is to much documents and that information is largely spread across several pieces.

Some may suspected this is done "on purpose"

The documentation mixes all aspects of SharePoint technologies:

communicating from FrontPage to administer web sites
communication between several SharePoint servers
customizing SharePoint
automating SharePoint
...

The point is that the really interesting part is what WSS clients (mainly Explorer and MSOffice) really use.

And on theses aspects it's not that easy to find precise informations about:

error handling for a given method
meaning of a meta-data in weermer-rpc
how the client interpret and use the results
...

Development was started based on the documentation, but we quickly realized that:

some points were not working as inside the doc
some parts of the protocol are not useful / needed

So, quickly we fall back to using ngrep to dump dialogs between a Windows VM and a SharePoint server.
Not very fancy, but efficient.

Outlines

Here is basically a quick overview of the WSS logic:

Negotiation phase

Client ask the server for capability and supported version.

At this point, the main "browsing protocol" is chosen: WebDav or FrontPage RPC.

FrontPage for browsing

Since WebDav for WSS seems to be droped for new versions of windows clients, we choose FrontPage RPC.
This is basically a simple HTTP protocol:

method name is sent as a request parameter
parameters are encoded (as QueryString, or as veermer encoding in the body)

HTML and JS for MSOffice WebView dialog

Open and Save dialogs for MSOffice are generated from HTML and JS is returned by the server.

There is some mystery on what part of the HTML and JS is actually used by MSOffice to make the dialog actually work.

For example the dialog worked very simply (based on a ngrep capture), but the Web Dialog for never worked for a reason that isOpen Save As
still unknown.

WebServices for Office Companion

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

471
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

The MS Office companion tool bar displays information about the data related to the workspace of the current open document:

users
tasks
links
other documents

This panel is using some WebServices to fetch data from the server.

Strangely, one of the panel tabs always remains empty, even when communicating with a "real SharePoint server".

Please note that this is a simple view, some clients (like the WSS Mac client) do not exactly behave this way...

Implementation choices

Make a generic handler

A big part of the work is about filters, handlers and marshalers: nothing fancy or fun.

We wanted to have this code as generic as possible in order to be reusable and not bound to the Nuxeo framework.

For most protocol handling part, that mainly depends on Servlet API, this is not really an issue.

It was more painful for managing configuration and pluggability: Extension Points were missing

Root binding

Surprisingly, WSS protocol needs to communicate with the root of the server.

Some part of the negotiation protocol can lead to think there was a way to limit root calls to only one, but it did not work as expected.

So, some service calls have to be handled in the root servlet context.

This is a design constraint, because you must have code in both context, and in some cases, it has to be the same code (same call on root and
on Nuxeo context path).

General design

Generic protocol handler

The generic handler is mainly composed of:

a main filter
handlers for each protocol (HTTP, FP-RPC endpoints, WebService ...)

handling marshaling and unmarshaling
a proxy system (to handle and forward calls made to the root)

SPI

The generic handler calls a simple SPI to do the actual work:

listing content
checkout / uncheckout
get meta-data on a document
download / upload a file

Test env

For testing purpose, a dummy "in memory backend" is provided.
It allows :

direct live testing of the generic handler
unit testing of the handler (using ngrep capture as test input)

Use of freemarker

Most WSS response handling is about HTML formatting.
For all this work FreeMarker was used since it is already bundled with Nuxeo.

Dummy WebService implementation

When testing WSS it appears that :

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

472
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

very few calls are indeed needed
most of them return a XML results encoded in a SOAP envelop

So, current implementation does not include a real WebService stack, and simply uses FreeMarker.

Using WSS in Nuxeo

Nuxeo backend for WSS

Setup

In order to test WSS against Nuxeo, you have two configurations to make:

setup the root filter and set it in proxy mode
deploy the nuxeo-wss-backend

Step 1 can be done in the root web.xml by just adding the org.nuxeo.wss.rootFilter param:

<filter>
 <display-name>WSS Filter</display-name>
 <filter-name>WSSFilter</filter-name>
 <filter-class>org.nuxeo.wss.servlet.WSSFilter</filter-class>
 <init-param>
 <param-name>org.nuxeo.wss.rootFilter</param-name>
 <param-value>/nuxeo</param-value>
 </init-param>
 </filter>
 <filter-mapping>
 <filter-name>WSSFilter</filter-name>
 <url-pattern>/*</url-pattern>
 </filter-mapping>

NB: the wss-handler jar needs to stay in $JBoss/server/default/lib
(no need to deploy it inside Nuxeo)

Step 2

Deploy nuxeo-platform-wss-backend in nuxeo.ear/plugins/

Accessing

You should be able to create a WebFolder or to open from MSOffice using:

http://server:8080/nuxeo/ : to access directly Nuxeo
http://server:8080/ : to access directly server root

Limitations of the model

WSS model is closer to a filesystem than to an ECM System.

Basically:

a document is a file
document title (display name) = name (URL part)
checkout system is very simple

In a lot of cases, Nuxeo DM offers much richer features, but they won't be accessible via WSS because the model does not permit that.

Furthermore, only very basic features of WSS are accessible via MS Office and Explorer: the simple filesystem operations.

Known bugs

since Nuxeo separates title and names and WSS does not, renaming from WSS can sometimes not work as expected
delete from Windows Explorer displays an error but works
(and response from Nuxeo server seems OK, but client does not like it...)

http://doc.nuxeo.com/x/GATF
http://server:8080/nuxeo/
http://server:8080/

 Nuxeo Enterprise Platform 5.4 Documentation

473
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

Using Generic Handler for your application

You can use Nuxeo WSS Generic Handler to provide WSS access to your application.
For that you should:

implement SPI
(cf package org.nuxeo.wss.spi)
override templates if needed
(templates defined in the backend override the default one)
configure the filter to use your backend

Packaging
In the following pages, we will see how to package your customization to make them available in your Nuxeo application.

Packaging from sources
Packaging a Nuxeo plugin

Packaging from sources

You don't need to use the nuxeo-distribution module if:

you want a standard Nuxeo distribution
=> download it from (manual download only)http://www.nuxeo.com/downloads/
=> download it from (manually via online interface or automatically using Maven)http://maven.nuxeo.org
you want to customize configuration files
=> use the template configuration system
you want to build your own distribution
=> rely on the same tools and principles as nuxeo-distribution does but do it from your own project, with your own assembly.

You have to use module if:nuxeo-distribution

you want to reproduce the Nuxeo build process,
you want to build Nuxeo offline,
=> Being unable to download artifacts from internet, you will need a lot of other Nuxeo sources and some third-party artifacts.
you work on Nuxeo source code and need quick feedback on your changes, you don't want to wait for our continuous integration system
building nuxeo-distribution

Read to the for more information on how to package from sources using nuxeo-distribution.Nuxeo Core Developer Guide

Packaging a Nuxeo plugin

Before starting to write your first Nuxeo Plugin you need to understand how the plugin code should be packaged as a Nuxeo Bundle, how it may
contribute resources (as static files or configuration) to the application and how it may contribute extensions to other components in the
framework. All this wiring is done at application startup. By understanding how the application starts and plugins are started you can control how
your components will be wired with other components in the application.

Overview

Let's talk first about some concepts used when developing Nuxeo Plugins.

A is a Java archive (JAR) packaged so that it works inside a Nuxeo Application.bundle
A is a functional module that can be plugged into a Nuxeo Application to provide some new functionality.plugin
A is a third party Java library required by some bundles to work.library

A is a piece of software defined by a used as an entry point by other components that wants to contribute somecomponent bundle
extensions or to ask for some service interface. A component is an abstract concept - it is not necessarily backed by a Java class and is
usually made from several classes and XML configuration.
A is a Java interface exported by a to the outside world. A component is also providing an implementation for theservice component
service it exports but it is discouraged to access the implementation class from outside a component. Components be accessedmust
using the interfaces they provide and not through real implementation classes.

When designing a plug-in you should clearly separate the plugin logic (i.e. types of logic it provides) and package these logical units as separate
bundles. Also, we recommend to split the public API from the implementation and package them in two different bundles.

Nuxeo Runtime

All the bundles included in a Nuxeo Application are part of different plugins (from the core plugins to the high level ones). A minimal application is

A plugin may come packaged as a single or as several bundles plus some optional third party libraries.

A component may export zero or more services, extension points or contributions to other extension points.

http://doc.nuxeo.com/x/GATF
http://www.nuxeo.com/downloads/
http://maven.nuxeo.org
https://doc.nuxeo.com/display/CORG/Creating+Your+Own+Distribution
https://qa.nuxeo.org/hudson/
https://doc.nuxeo.com/display/CORG/Nuxeo+Core+Developer+Guide

 Nuxeo Enterprise Platform 5.4 Documentation

474
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

represented by a single plugin - the framework itself (which is itself packaged as a bundle).
This is what we are naming . Of course launching the Nuxeo Runtime without any plugin installed is useless - apart a welcomeNuxeo Runtime
message in the console nothing happens.
But, starting from you can build a complete application by installing different plugins (depending on the type of your applicationNuxeo Runtime
you may end up with tens of bundles).

A basic Nuxeo Application is composed at least of two layers of plugins: the runtime layer and the core one.

Nuxeo Core

The Nuxeo Core is a set of plugins that provides the Nuxeo Content Repository and some extra services closely related to the repository.
If you want to build an embedded repository + plugins are enough. You may also consider to add the CMIS pluginNuxeo Runtime Nuxeo Core
for remote access to the repository.

Nuxeo Services

This the third layer of plugins that includes the vast majority of Nuxeo plugins and which provide high level functionalities over the content
repository.
Plugins in this layer require (almost always) the Nuxeo Core layer.

Nuxeo UI

For the UI part you currently have multiple choices:

either use the default Nuxeo UI infrastructure based on Seam + JSF.
either use WebEngine.
either use GWT (through WebEngine).
either use a composite UI made of all of these technologies together.

You can also install optional plugins (e.g.) not installed by default in a Nuxeo Application. add-ons
You can easily install add-ons from Nuxeo Marketplace, or create add-ons using Nuxeo Studio.

Thus, Nuxeo provide a modular framework to create content based applications. The difficulty to create custom applications comes from the
modularity itself. Almost any Nuxeo plugin (i.e. apart Nuxeo Runtime) has dependencies on other plugins. When building a custom application you
should make sure you install all dependencies you need.

In next sections we will discuss more about how to package your bundles and how wiring is done at application startup.

Nuxeo Bundles

A Nuxeo Bundle is a regular Java JAR with an OSGi Manifest file. Although Nuxeo Runtime is not an OSGi framework, it is able to load OSGi
bundles and wire them into the application.

But what is OSGi?
For more details about OSGi check the OSGi specifications. I will only explain in short terms some OSGi concepts:
Roughly an OSGi framework provides a:

a lifecycle model for Java modules
a service model.

When an OSGi framework starts it will try to load all bundles installed in the system and when all dependencies of a bundle are resolved it is
starting it. Starting a bundle means invoking the declared Bundle Activator if any is declared in the Manifest file.
This way each bundle that register an activator is notified that it was started - so the bundle activator can do any initialization code required for the
bundle to be ready to work. In the same way when a bundle is removed the bundle activator will be notified to cleanup any held resources.
More OSGi frameworks provides listeners to notify all interested bundles on various framework events like starting a bundle, stopping another one
etc.
This mechanism provides a flexible way to build modular applications which are composed of components that need to take some actions when
some resources are become available or are removed.
This lifecycle mechanism helps bundles to react when changes are made in the application. Thus, an OSGi bundle is notified when all its
dependencies were resolved and it can start providing services to other bundles.

OSGi is also proposing a service model - so that bundles can export services to other bundles in the platform.

As I said Nuxeo Runtime is not a fully OSGi framework, so not all OSGi features are supported. Here is a list of

But anyway Nuxeo use te OSGi model in loading bundles and also requires some OSGi headers in the manifest. In fact the only OSGi header
required by now is Bundle-SymbolicName. Apart this you can use a regular manifest file.

Note
Even if Nuxeo Runtime launcher is not fully OSGi it is recommended to use valid OSGi Manifests. Because the core part of Nuxeo can
already run on Equinox - you should provide a valid OSGi Manifest if you want to deploy your bundles in an Equinox based distribution
of Nuxeo. But in the default distribution you only need to define a Bundle-SymbolicName

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

475
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

There are 2 major differences between the default Nuxeo Runtime launcher and an OSGi framework:

Nuxeo is using single class loader for all bundles. It doesn't interpret OSGi dependencies in the Manifest.
Nuxeo Services are not exposed as OSGi services. (this will change in future)

Then what's good for the OSGi Manifest?

Using the manifest you can define an unique name for your bundle (e.g. the Bundle-SymbolicName). This name is helping the framework
to identify the bundle.
Using the manifest you can define an activator class.
Using the manifest you can declare bundle dependencies (so that the bundle can be started only when dependencies are resolved). Also,
these dependencies are used to determine the visible class path of your bundle. Classes not specified in dependencies will not be visible
to your bundle. Bundle dependencies by Nuxeo Runtime launcher - so for now you don't need to care about dependencies -are ignored
but see the note below.

In Nuxeo, the best way to initialize your components (without worrying about dependencies) is to use a lazy loading model - so that a service is
initialized at the first call. This method also speed the startup time.
Another method is to use the event for initialization. But this should be used with precaution since its use in Nuxeo itsFRAMEWORK_STARTED
not respecting OSGi specifications - and may change in future.

Here is an example of a minimal Manifest as required by Nuxeo.

Manifest-Version: 1.0
Bundle-SymbolicName: org.nuxeo.ecm.core.api
Nuxeo-Component: OSGI-INF/DocumentAdapterService.xml,
 OSGI-INF/RepositoryManager.xml,
 OSGI-INF/blob-holder-service-framework.xml,
 OSGI-INF/blob-holder-adapters-contrib.xml,
 OSGI-INF/pathsegment-service.xml

Here is the same Manifest but OSGI valid (and works in Eclipse):

Export-Package: org.nuxeo.ecm.core;api=split;mandatory:=api,
 org.nuxeo.ecm.core.api;api=split;mandatory:=api,
 org.nuxeo.ecm.core.api.security,
 org.nuxeo.ecm.core.api.repository,
 org.nuxeo.ecm.core.api.model.impl.primitives,
 org.nuxeo.ecm.core.api.event.impl,
 org.nuxeo.ecm.core.api.impl.converter,
 org.nuxeo.ecm.core.utils,
 org.nuxeo.ecm.core.api.security.impl,
 org.nuxeo.ecm.core.api.model.impl.osm,
 org.nuxeo.ecm.core.url,
 org.nuxeo.ecm.core.api.impl,
 org.nuxeo.ecm.core.api.operation,
 org.nuxeo.ecm.core.api.model.impl.osm.util,
 org.nuxeo.ecm.core.api.externalblob,
 org.nuxeo.ecm.core.url.nxobj,
 org.nuxeo.ecm.core.api.model,
 org.nuxeo.ecm.core.api.repository.cache,
 org.nuxeo.ecm.core.api.impl.blob,
 org.nuxeo.ecm.core.api.model.impl,
 org.nuxeo.ecm.core.api.blobholder,

Important
In future Nuxeo is planing to replace its own launcher with a real OSGi framework - like Virgo - so your are encouraged to use real
OSGi Manifests to avoid refactoring later.
So, to resume: in you don't have do declare dependencies or other OSGi Manifest headers than . YouNuxeo Bundle-SymbolicName
can optionally declare a to receive notifications when your bundle is started or stopped.Bundle-Activator

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

476
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

 org.nuxeo.ecm.core.api.tree,
 org.nuxeo.ecm.core.api.adapter,
 org.nuxeo.ecm.core.api.local,
 org.nuxeo.ecm.core.url.nxdoc,
 org.nuxeo.ecm.core.api.facet,
 org.nuxeo.ecm.core.api.event
Bundle-ActivationPolicy: lazy
Bundle-ClassPath: .
Manifest-Version: 1.0
Bundle-Name: org.nuxeo.ecm.core.api
Created-By: 1.6.0_20 (Sun Microsystems Inc.)
Bundle-RequiredExecutionEnvironment: JavaSE-1.6
Bundle-Version: 0.0.0.SNAPSHOT
Bundle-ManifestVersion: 2
Nuxeo-Component: OSGI-INF/DocumentAdapterService.xml,
 OSGI-INF/RepositoryManager.xml,
 OSGI-INF/blob-holder-service-framework.xml,
 OSGI-INF/blob-holder-adapters-contrib.xml,
 OSGI-INF/pathsegment-service.xml
Import-Package: javax.security.auth,
 javax.security.auth.callback,
 javax.security.auth.login,
 javax.security.auth.spi,
 org.apache.commons.collections.bidimap,
 org.apache.commons.collections.map,
 org.apache.commons.logging,
 org.nuxeo.common,
 org.nuxeo.common.collections,
 org.nuxeo.common.utils,
 org.nuxeo.common.xmap.annotation,
 org.nuxeo.ecm.core.schema,
 org.nuxeo.ecm.core.schema.types,
 org.nuxeo.ecm.core.schema.types.primitives,
 org.nuxeo.runtime,
 org.nuxeo.runtime.api,
 org.nuxeo.runtime.api.login,
 org.nuxeo.runtime.model,
 org.nuxeo.runtime.services.streaming
Bundle-SymbolicName: org.nuxeo.ecm.core.api;singleton=true

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

477
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

Eclipse-RegisterBuddy: org.nuxeo.runtime
Eclipse-ExtensibleAPI: true

Nuxeo is also using two specific maifest headers:

Nuxeo-Component: which specify components declared by a bundle (as XML descriptor file paths relative to JAR root)
Nuxeo-WebModule: which specify the class name of a JAX-RS application declared by a Nuxeo bundle.

Of course these two headers are optional ad should be used only when needed.

Bundle Preprocessing

Nuxeo is a very dynamic platform. When building a Nuxeo Application you will get an application template. At each startup, the application files
are dynamically updated by each bundle in the application that need to modify a global configuration setting or to provide a global resource. We
call this mechanism . In fact it is more a post build process that is triggered at each startup.preprocessing

Why are we doing this?

Shouldn't we run this preprocessing at build-time (e.g. in the maven build cycle) rather than at runtime?

Nuxeo Components

Nuxeo Extension Points

Nuxeo Services

Nuxeo Properties and Configuration Extensions

Navigation URLs
There are two services that help building GET URLs to restore a Nuxeo context. The default configuration handle restoring the current document,
the view, current tab and current sub tab.

Document view codec service

The service handling document views allows registration of codecs. Codecs manage coding of a document view (holding a document reference,
repository name as well as key-named string parameters) in to a URL, and decoding of this URL into a document view.

Example of a document view codec registration:

<extension
 target="org.nuxeo.ecm.platform.url.service.DocumentViewCodecService"
 point="codecs">

 <documentViewCodec name="docid" enabled="true" default="true" prefix="nxdoc"
 class="org.nuxeo.ecm.platform.url.codec.DocumentIdCodec" />
 <documentViewCodec name="docpath" enabled="true" default="false" prefix="nxpath"
 class="org.nuxeo.ecm.platform.url.codec.DocumentPathCodec" />

</extension>

In this example, the docid codec uses the document uid to resolve the context. Urls are of the form . Thehttp://site/nuxeo/nxdoc/demo/docuid/view
docpath codec uses the document path to resolve the context. Urls are of the form .http://site/nuxeo/nxpath/demo/path/to/my/doc@view

Additional parameters are coded/decoded as usual request parameters.

Backward Compatibility
Before the 5.4 release, Nuxeo used the OSGi dependency headers like but this was removed in 5.4 release becauseBundle-Require
the usage was not conform to OSGi specifications. So now you don't need to specify neither , nor Bundle-Require Nuxeo-Require Nux

 in your Manifest files. But anyway see the not above - you are encouraged to use real OSGi Manifests.eo-RequiredBy

http://doc.nuxeo.com/x/GATF
http://site/nuxeo/nxdoc/demo/docuid/view
http://site/nuxeo/nxpath/demo/path/to/my/doc@view

 Nuxeo Enterprise Platform 5.4 Documentation

478
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

Note that when building a document view, the url service will require a view id. The other information (document location and parameters) are
optional, as long as they're not required for your context to be initialized correctly.

URL policy service

The service handling URLs allows registration of patterns. These patterns help saving the document context and restoring it thanks to information
provided by codecs. The URL service will iterate through its patterns, and use the first one that returns an answer (proving decoding was
possible).

Example of a url pattern registration:

<extension target="org.nuxeo.ecm.platform.ui.web.rest.URLService"
 point="urlpatterns">

 <urlPattern name="default" enabled="true">
 <defaultURLPolicy>true</defaultURLPolicy>
 <needBaseURL>true</needBaseURL>
 <needRedirectFilter>true</needRedirectFilter>
 <needFilterPreprocessing>true</needFilterPreprocessing>
 <codecName>docid</codecName>
 <actionBinding>#{restHelper.initContextFromRestRequest}</actionBinding>
 <documentViewBinding>#{restHelper.documentView}</documentViewBinding>
 <newDocumentViewBinding>#{restHelper.newDocumentView}</newDocumentViewBinding>
 <bindings>
 <binding name="tabId">#{webActions.currentTabId}</binding>
 <binding name="subTabId">#{webActions.currentSubTabId}</binding>
 </bindings>
 </urlPattern>

</extension>

In this example, the "default" pattern uses the above "docid" codec. Its is set as the default URL policy, so that it's used by default when caller
does not specify a pattern to use. It needs the base URL: the docid codec only handles the second part if the URL. It needs redirect filter: it will be
used to provide the context information to store. It needs filter preprocessing: it will be used to provide the context information to restore. It's using
the docid codec.

The action binding method handles restoring of the context in the Seam context. It takes a document view as parameter. It requires special
attention: if you're using conversations (as Nuxeo does by default), you need to annotate this method with a "@Begin" tag so that it uses the
conversation identifier passed as a parameter if it's still valid, or initiates a new conversation in other cases. The method also needs to make sure
it initializes all the seam components it needs (documentManager for instance) if they have not be in intialized yet.

The additional document view bindings are used to pass document view information through requests. The document view binding maps to
corresponding getters and setters. The new document view binding is used to redirect to build GET URL in case request is a POST: it won't have
the information in the URL so it needs to rebuild it.

Other bindings handle additional request parameters. In this example, they're used to store and restore tab and sub tab information (getters and
setters have to be defined accordingly).

Additional configuration

The URL patterns used need to be registered on the authentication service so that they're considered as valid urls. Valid urls will be stored in the
request, so that if authentication is required, user is redirected to the url after login.

Example of a start url pattern registration:

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

479
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

<extension
 target="org.nuxeo.ecm.platform.ui.web.auth.service.PluggableAuthenticationService"
 point="startURL">

 <startURLPattern>
 <patterns>
 <pattern>nxdoc/</pattern>
 </patterns>
 </startURLPattern>

</extension>

Just the start of the url is required in this configuration. Contributions are merged: it is not possible to remove an existing start pattern.

The URL patterns used also need to be handled by the default nuxeo authentication service so that login mechanism (even for anonymous)
applies for them.

Example authentication filter configuration:

<extension target="web#STD-AUTH-FILTER">
 <filter-mapping>
 <filter-name>NuxeoAuthenticationFilter</filter-name>
 <url-pattern>/nxdoc/*</url-pattern>
 <dispatcher>REQUEST</dispatcher>
 <dispatcher>FORWARD</dispatcher>
 </filter-mapping>
</extension>

This is a standard filter mapping configuration.

URL JSF tags

There are some JSF tags and functions helping you to define what kind of GET URL should be displayed on the interface.

Example of nxd:restDocumentLink use:

<nxd:restDocumentLink document="#{doc}">
 <nxh:outputText value="#{nxd:titleOrId(doc)}" />
</nxd:restDocumentLink>

In this example, the tag will print a simple link, using the default pattern, and build the document view using given document model, using its
default view.

Please refer to the tag library documentation available at forhttp://community.nuxeo.com/api/nuxeo/5.4/tlddoc/nxd/restDocumentLink.html
additional parameters: it's possible to set the tab, sub tab, and use a specific URL pattern.

Note that you can also use JSF functions to build the GET URL. This is what's done for file links: the function queries the URL policy service to
build the URL.

Example of a jsf function use:

http://doc.nuxeo.com/x/GATF
http://community.nuxeo.com/api/nuxeo/5.4/tlddoc/nxd/restDocumentLink.html

 Nuxeo Enterprise Platform 5.4 Documentation

480
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

<nxh:outputLink rendered="#{doc.hasSchema('file') and !empty doc.file.content}"
 value="#{nxd:fileUrl('downloadFile', doc, 'file:content', doc.file.filename)}">
 <nxh:graphicImage value="/icons/download.png" style="vertical-align:middle"
 title="#{doc.file.filename}" />
</nxh:outputLink>

Here is an the fileURL method code as an example:

public static String fileUrl(String patternName, DocumentModel doc,
 String blobPropertyName, String filename) {
 try {
 DocumentLocation docLoc = new DocumentLocationImpl(doc);
 Map<String, String> params = new HashMap<String, String>();
 params.put(DocumentFileCodec.FILE_PROPERTY_PATH_KEY,
 blobPropertyName);
 params.put(DocumentFileCodec.FILENAME_KEY, filename);
 DocumentView docView = new DocumentViewImpl(docLoc, null, params);

 // generate url
 URLPolicyService service = Framework.getService(URLPolicyService.class);
 if (patternName == null) {
 patternName = service.getDefaultPatternName();
 }
 return service.getUrlFromDocumentView(patternName, docView,
 BaseURL.getBaseURL());

 } catch (Exception e) {
 log.error("Could not generate url for document file", e);
 }

 return null;
}

Dev Cookbook
Welcome to the Nuxeo developer cookbook!

In this cookbook, we provide you with development recipes to customize a Nuxeo application. Recipes are intended to be independent: you can
try any recipe at any time.

Our recipes:
How-to create an empty bundle
How-to implement an Action

How-to create an empty bundle

This recipe describes the steps to create the bare structure of a Nuxeo add-on project (aka a bundle). It takes the Nuxeo Document Management
(DM) distribution as a example but can be done with any other Nuxeo distribution, such as Nuxeo Document Asset Management (DAM) or Nuxeo
Case Management Framework (CMF).

This is the very first recipe of this cookbook and it will be the basis for the development of new bundles, of new features, even of new UI elements
all along this cookbook. All the other recipes will assume that this recipe has been done.

General remarks
This recipe is not specific to a system or an IDE. You will have to adapt it to your needs. The sole obligation is to use Maven in
a console. But, even this part, with experience, could be fitted to your IDE habits if you have any.

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

481
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

1.

2.

3.

4.

This recipe is composed of the major steps below:

Step 1: Create the basic project skeleton using Maven
Step 2: Complete the folder structure
Step 3: Adapt or create Files
Step 4: Install and check the deployment of your Bundle

What you need

Tool Version

Java jdk 1.6

Maven 2.2.1

Packaged Nuxeo DM distribution 5.4.1-Tomcat

Create the basic project skeleton using Maven

To create a basic folder structure, we use Maven and its default archetype. There is no required location to create your project.
To create your project structure, follow the steps below.

In a console, type: .mvn archetype:generate
The available archetypes are listed.
Check that in the logs displayed, you have the two lines below:

[INFO] No archetype defined. Using maven-archetype-quickstart
(org.apache.maven.archetypes:maven-archetype-quickstart:1.0)
Choose archetype:
[...]
104: remote -> maven-archetype-quickstart (An archetype which contains a sample
Maven project.)
[...]

If not, you may have the wrong version of Maven.

You are prompted a series of choices to create your project. Accept the default propositions (by pressing Enter) except for the groupId
and of your project which must be:artifactId

groupId org.nuxeo.cookbook

artifactId bareproject

Confirm the defined settings.
The logs indicate that the build was successful.

Here is an example of the log you should have for the whole project creation (some lines have been skipped using "[…]"):

[INFO] Scanning for projects...
[INFO] Searching repository for plugin with prefix: 'archetype'.
[INFO] --
[INFO] Building Maven Default Project
[INFO] task-segment: [archetype:generate] (aggregator-style)
[INFO] --

You'll find the most frequent and common errors and problems detailed and resolved in the .FAQ

For any remark about this recipe or about this cookbook, don't hesitate to leave us a comment on this page.

Warning
As the number of archetype is based on archetype contributions, the reference is not automatically "104". But the default
proposition should still be "org.apache.maven.archetypes:maven-archetype-quickstart" whatever the version is.

http://doc.nuxeo.com/x/GATF
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://maven.apache.org/download.html
http://community.nuxeo.com/static/releases/nuxeo-5.4.1/nuxeo-dm-5.4.1-tomcat.zip
https://doc.nuxeo.com/display/KB

 Nuxeo Enterprise Platform 5.4 Documentation

482
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

[INFO] Preparing archetype:generate
[INFO] No goals needed for project - skipping
[INFO] [archetype:generate {execution: default-cli}]
[INFO] Generating project in Interactive mode
[INFO] No archetype defined. Using maven-archetype-quickstart
(org.apache.maven.archetypes:maven-archetype-quickstart:1.0)
Choose archetype:
1: remote -> docbkx-quickstart-archetype (-)
2: remote -> multi (-)
[...]
103: remote -> maven-archetype-profiles (-)
104: remote -> maven-archetype-quickstart (An archetype which contains a sample Maven
project.)
105: remote -> maven-archetype-site (An archetype which contains a sample Maven site
which demonstrates some of the supported document types like
 APT, XDoc, and FML and demonstrates how to i18n your site. This archetype can be
layered
 upon an existing Maven project.)
[...]
385: remote -> javg-minimal-archetype (-)
Choose a number: 104:
Choose version:
1: 1.0-alpha-1
2: 1.0-alpha-2
3: 1.0-alpha-3
4: 1.0-alpha-4
5: 1.0
6: 1.1
Choose a number: 6:
Define value for property 'groupId': : org.nuxeo.cookbook
Define value for property 'artifactId': : bareproject
Define value for property 'version': 1.0-SNAPSHOT:
Define value for property 'package': org.nuxeo.cookbook:
Confirm properties configuration:
groupId: org.nuxeo.cookbook
artifactId: bareproject
version: 1.0-SNAPSHOT
package: org.nuxeo.cookbook
Y:
[INFO] --
[INFO] Using following parameters for creating project from Old (1.x) Archetype:
maven-archetype-quickstart:1.1
[INFO] --
[INFO] Parameter: groupId, Value: org.nuxeo.cookbook
[INFO] Parameter: packageName, Value: org.nuxeo.cookbook
[INFO] Parameter: package, Value: org.nuxeo.cookbook
[INFO] Parameter: artifactId, Value: bareproject
[INFO] Parameter: basedir, Value: /home/user1/Workspaces/CookbookTest
[INFO] Parameter: version, Value: 1.0-SNAPSHOT
[INFO] ********************* End of debug info from resources from generated POM

[INFO] project created from Old (1.x) Archetype in dir:
/home/user1/Workspaces/CookbookTest/bareproject
[INFO] --
[INFO] BUILD SUCCESSFUL
[INFO] --
[INFO] Total time: 13 minutes 51 seconds
[INFO] Finished at: Thu Apr 21 10:51:01 CEST 2011

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

483
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

[INFO] Final Memory: 14M/213M
[INFO] --

Complete the folder structure

After you completed the project creation, you get this folder structure:

bareproject
|
`-- src
 |-- main
 | `-- java
 | `-- org
 | `-- nuxeo
 | `-- cookbook
 `-- test
 `-- java
 `-- org
 `-- nuxeo
 `-- cookbook

To fit to the classical structure of a Nuxeo add-on project, you need to create new folders in and using your favorite means.src/main src/test
At the end, you need to get a folder structure as shown below.

bareproject
|
`-- src
 |-- main
 | |-- java
 | | `-- org
 | | `-- nuxeo
 | | `-- cookbook
 | `-- resources
 | |-- META-INF
 | |-- OSGI-INF
 | |-- schemas
 | `-- web
 | `-- nuxeo.war
 `-- test
 |-- java
 | `-- org
 | `-- nuxeo
 | `-- cookbook
 `-- resources
 `-- META-INF

Adapt or create files

The ending of may be deceiptive, but it is actually a folder and not a file..war nuxeo.war

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

484
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

1.

2.
3.

Adapt the pom.xml file

We need to customize the pom.xml file provided by the archetype at the root folder of the project.

Change the parent entry.

<parent>
 <groupId>org.nuxeo.ecm.platform</groupId>
 <artifactId>nuxeo-features-parent</artifactId>
 <version>5.4.1</version>
</parent>

In the dependencies, delete the JUnit entry.
Add repositories.

<repositories>
 <repository>
 <id>public</id>
 <url>http://maven.nuxeo.org/public</url>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 <releases>
 <enabled>true</enabled>
 </releases>
 </repository>
 <repository>
 <id>snapshots</id>
 <url>http://maven.nuxeo.org/public-snapshot</url>
 <snapshots>
 <enabled>true</enabled>
 </snapshots>
 <releases>
 <enabled>false</enabled>
 </releases>
 </repository>
</repositories>

Your "pom.xml" file should at the end to look like this:

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

485
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>

 <groupId>org.nuxeo.cookbook</groupId>
 <artifactId>bareproject</artifactId>
 <version>1.0-SNAPSHOT</version>
 <packaging>jar</packaging>

 <name>bareproject</name>
 <url>http://maven.apache.org</url>

 <properties>
 <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
 </properties>

 <parent>
 <groupId>org.nuxeo.ecm.platform</groupId>
 <artifactId>nuxeo-features-parent</artifactId>
 <version>5.4.1</version>
 </parent>

 <!-- nuxeo repos have copies of everything needed -->
 <repositories>
 <repository>
 <id>public</id>
 <url>http://maven.nuxeo.org/public</url>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 <releases>
 <enabled>true</enabled>
 </releases>
 </repository>
 <repository>
 <id>snapshots</id>
 <url>http://maven.nuxeo.org/public-snapshot</url>
 <snapshots>
 <enabled>true</enabled>
 </snapshots>
 <releases>
 <enabled>false</enabled>
 </releases>
 </repository>
 </repositories>

 <dependencies>

 </dependencies>
</project>

Create a "deployment-fragment.xml" file

In order to deploy your Nuxeo add-on project in the Nuxeo server, you need to add a new file called "deployment-fragment.xml" in the

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

486
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

"/src/main/resources/OSGI-INF" folder. This file tells the deployment mechanism which files must be copied and where. This file is not mandatory
at this stage, but it is needed to have your bundle displayed in the log at start up.

For now, the content of the file "deployment-fragment.xml" should be:

<?xml version="1.0"?>
<fragment version="1">
<!-- will contains some stuff -->
 <install>
<!-- useful later -->
 </install>
</fragment>

The content of this file will be completed in a coming recipe.

Create a "MANIFEST.MF" file

As Nuxeo add-ons are OSGi modules, you need to create a "MANIFEST.MF" file in the "/src/main/resources/META-INF" folder. This file can be
customized as shown in .this lesson

Here are the minimal properties the "MANIFEST.MF" file must hold:

Manifest-Version: 1.0
Bundle-ManifestVersion: 1
Bundle-Name: cookbook-basic-bundle
Bundle-SymbolicName: org.nuxeo.cookbook.basic;singleton:=true
Bundle-Version: 0.0.1
Bundle-Vendor: Nuxeo

Some of the values above are mandatory, some should be changed to adapt to your needs.
The following properties are more the less "constants" and their values must be always the same:

Manifest-Version: 1.0
Bundle-ManifestVersion: 1

The other properties should be customized to your needs.
The two principals are:

Bundle-Name: cookbook-basic-bundle
Bundle-SymbolicName: org.nuxeo.cookbook.basic;singleton:=true

"Bundle-Name" corresponds to the human-readable name of the bundle;
"Bundle-SymbolicName" is the reference computed by the OSGi container and looked-up by the other bundles. This declaration is
immediately followed, on the same line, by ";singleton:=true" which declares to the OSGi container that the bundle can't cohabit with an
other version of the bundle at runtime. The semi-colon is of course mandatory.

The other properties are:

"Bundle-Version": This property is all on your responsibility. The Nuxeo convention is three digits separated by a dot such as "0.0.1";
"Bundle-Vendor": This is the name of the add-on owner.

Although not used in this recipe, there is one more property you should know of: "Nuxeo-Component:".
It contains a list of files used to define various elements of your component. Its use is detailed in .this lesson

http://doc.nuxeo.com/x/GATF
https://doc.nuxeo.com/pages/createpage.action?spaceKey=CORG&title=TO+DO
https://doc.nuxeo.com/pages/createpage.action?spaceKey=CORG&title=TODO

 Nuxeo Enterprise Platform 5.4 Documentation

487
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

1.

2.

3.

Create files for the tests

"log4j.properties"

As the tests will run in a sandbox, it could be useful to define a file named "log4j.properties" file. It must be placed in the "/src/test/resources"
folder.

Here is the content of such a file:

log4j.rootLogger=WARN, CONSOLE
log4j.appender.CONSOLE=org.apache.log4j.ConsoleAppender
log4j.appender.CONSOLE.layout=org.apache.log4j.PatternLayout
log4j.appender.CONSOLE.layout.ConversionPattern=%d{HH:mm:ss,SSS} %-5p [%C{1}] %m%n

To make the log more or less verbose, just change the first value of the "log4j.rootlogger" property.
In this example, the level is "WARN". If you want more details, downgrade it to "DEBUG". You will have more entries displayed in the console
about Nuxeo classes involved in the running tests.

"MANIFEST.MF"

Create a new "MANIFEST.MF" file, in the "/src/test/resources/META-INF" folder this time.
The content of this file should be:

Manifest-Version: 1.0
Bundle-ManifestVersion: 1
Bundle-Name: cookbook-basic-bundle-test
Bundle-SymbolicName: org.nuxeo.cookbook.basic.test;singleton:=true
Bundle-Version: 0.0.1
Bundle-Vendor: Nuxeo

The most important difference between this content and the one declared in the "/src/main/resources/META-INF/MANIFEST.MF" file, is the value
of the "Bundle-SymbolicName:" property. Those two have to be different to avoid bundle Symbolic Name collision.

Install and check the deployment of your bundle

Build your bundle, using the following Command Line Interface (CLI):

$ mvn install

In the "/target" folder of your project, you get a JAR file whose name if formed like that: artifactId-1.0-SNAPSHOT.jar.
Copy your brand new jar into the sub-folder "nxserver/plugins/" of your nuxeo application's root folder:

under Windows, assuming that the nuxeo-distribution is installed at the location "C:\Nuxeo\", copy the jar in
"C:\Nuxeo\nxserver\plugins\";
under Linux, assuming that the nuxeo-distribution is installed at the location "/opt/nuxeo", copy the jar in
"/opt/nuxeo/nxserver/plugins".

Start your server using the "./nuxeoctl console" command

1.

2.

3.

Formatting
The trickiest and most important part of a "MANIFEST.MF" file is its formatting. One mistake and the OSGi context can't be correctly
started, leading to unexpected issues and an unreachable bundle. Here are the three formatting rules to respect:

Each property name:
begins at the first character of the line;
ends with a colon without space between the name of the property and the colon itself.

Each value:
must be preceded by a space;
ends with a "end of line" with eventually a comma before it.

There MUST be an EMPTY LINE at the END OF THE FILE.

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

488
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

3.

4. Check that your bundle is correctly deployed: check if its SymbolicName (as configured in the "/src/main/resources/META-INF") appears
in the logs. The logs are displayed:

in the console if you started your server using the "./nuxeoctl console"
in the file "server.log" located in the "log" folder of your Nuxeo server root folder.
This name is found in the list of the bundles deployed by Nuxeo in the very first lines of the logs, just after the line ended by "
Preprocessing order:".

In the following example, the name of your bundle could be found at the line n°8 of the following print (some lines of the logs have been skip using
"[CORG:…]"):

2011-04-18 10:37:02,384 INFO
[org.nuxeo.runtime.deployment.preprocessor.DeploymentPreprocessor] Preprocessing
order:
 org.nuxeo.ecm.webengine.core
 org.nuxeo.ecm.platform.ui
 org.nuxeo.ecm.platform.types.core
 org.nuxeo.ecm.platform.uidgen.core
 [...]
 org.nuxeo.ecm.platform.oauth
 org.nuxeo.cookbook.book
 org.nuxeo.ecm.platform.syndication
 org.nuxeo.ecm.platform.audit.ws
 [...]
 org.nuxeo.ecm.relations.jena

Now you've got a bundle ready for customization. You can propose your contribution to configuration and use it to improve your Nuxeo instance.
Let's move to to discover how this is possible!another recipe

As said in the beginning of this recipe, if you have unexpected errors or Nuxeo Application behavior don't forget to check the FAQ and don't forget
to leave us a comment about this recipe or about the cookbook!

How-to implement an Action

This recipe shows you how to configure an action in a bundle for a Nuxeo application.

This recipe describes how to define a new clickable icon in the webpage GUI of your Nuxeo application. This icon will redirect users to the
"Sending Email" page.
To keep things simple and focused on the action configuration, this recipe is based on the action called "send_email". The "send_email" action is
triggered by an icon displayed in the "Context Tool area" (i.e. the red ellipse area).

This icon (circled in red) is calling the action and is displayed only when a document is exposed in the main area as shown below. We will add
another icon that does the same.

You can check the dedicated of the technical documentation for more information about the different waysStart and stop page
to start your server).

http://doc.nuxeo.com/x/GATF
https://doc.nuxeo.com/display/KB

 Nuxeo Enterprise Platform 5.4 Documentation

489
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

When the user clicks this icon, he is redirected to the following page, from which he will be able to send the email.

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

490
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

For this recipe, you don't need a working email server: the call to the emailing page is sufficient. However, if you want to send the email, you can
configure your Nuxeo application instance by following .the steps described on the recommended configuration of a Nuxeo server

This recipe is composed of the steps below:

Create the project
Prepare the resources needed
Define your action in a XML file
Edit the MANIFEST.MF file
Install and check the deployment of your action

Create the project

The very first step to implement an action is to create a new project, here called "nuxeo-action-project" (see the " "How-to create an empty bundle
recipe for details on the project creation).
After you completed the project's structure, you have to configure the new action and define it as an OSGi component. The project structure is
generally completed manually. However, you can also get it from .this zipped empty project

Prepare the resources needed

General remarks
This recipe is not specific to a system or an IDE. You will have to adapt it to your needs. The sole obligation is to use Maven in
a console. But, even this part, with experience, could be fitted to your IDE habits if you have any.

You'll find the most frequent and common errors and problems detailed and resolved in the .FAQ

For any remark about this recipe or about this cookbook, don't hesitate to leave us a comment on this page.

If you followed the " " recipe, you can use the project created for this recipe and jump to the How-to create an empty bundle configuration
.steps

http://doc.nuxeo.com/x/GATF
https://doc.nuxeo.com/display/NXDOC54/Recommended+configurations#Recommendedconfigurations-Enableemailalerts
http://maven.in.nuxeo.com/nexus/content/repositories/public-releases/org/nuxeo/cookbook/emptyproject/1.0/emptyproject-1.0.zip
https://doc.nuxeo.com/display/KB

 Nuxeo Enterprise Platform 5.4 Documentation

491
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

1.

2.

3.

The purpose of this recipe is to add a new icon with a label, on which users will click to send an email from the document.

Create a new "icons" folder in the "src/main/resources/web/nuxeo.war" folder of your project.

Save this icon () in the newly created "icons" folder. Of course you can use any other icon of your choice. Just be careful of the icon's
name in the next steps.

Modify your "deployment-fragment.xml" file to incorporate this icon in your Nuxeo application.
The "deployment-fragment.xml" file content should be like this:

<?xml version="1.0"?>
<fragment version="1">

 <install>

 <!-- unzip the war template -->
 <unzip from="${bundle.fileName}" to="/" prefix="web">
 <include>/web/nuxeo.war/**</include>
 </unzip>

 </install>
</fragment>

Define your action in a XML file

Now you have to define your action in a file named "action-contrib.xml", located in the "src/main/resources/OSGI-INF" folder.

Resources

The image proposed here () is part of the silk icon set of release under FAMFAMFAM page Creative Commons Attribution 2.5
.License

http://doc.nuxeo.com/x/GATF
http://www.famfamfam.com/lab/icons/silk/
http://creativecommons.org/licenses/by/2.5/
http://creativecommons.org/licenses/by/2.5/

 Nuxeo Enterprise Platform 5.4 Documentation

492
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

The content of the file is the following:

<?xml version="1.0"?>
<component name="org.nuxeo.cookbook.basic.action">
 <extension target="org.nuxeo.ecm.platform.actions.ActionService"
 point="actions">
 <action icon="/icons/asterisk_orange.png" id="myAction"
 label="An other way to send an email" link="send_email" order="17">
 <category>DOCUMENT_UPPER_ACTION</category>
 <filter id="cookbook_action_filter">
 <rule grant="false">
 <facet>Folderish</facet>
 </rule>
 </filter>

 </action>
 </extension>
</component>

Component
The name of your component is the the name of your action.
Make sure that this name is unique otherwise your Nuxeo application instance could behave unexpectedly.
There should be only one component called "org.nuxeo.cookbook.basic.action" for the whole application.

Extension

The "target" of the extension is the Java class which implements your action.
The "point" of the extension is its type. Here, you want to create an action, so the extension point is "actions" (don't forget the ending 's').

Action
The <action> tag defines:

which "icon" will be displayed to the user. The path to the icon file is relative to the root of the "nuxeo.war" folder of your Nuxeo
application;
which "label" of the action, i.e. the text displayed as a tooltip. You can use a localizable property but to do so see the recipe "How-to

;localize a bundle"
the action's "id" in Nuxeo application instance;
which action referenced in Nuxeo should be triggered when the user clicks on the icon (parameter "link"). Here the referenced action is a
simple string (send_email). It could be the path to a page or a key known by your Nuxeo application instance.

Category
The category value specifies the position of the button in the page.
Nuxeo UI is divided in several parts, called categories (cf the page). An action can belong to several categories and listsUser actions categories
them in the "category" attribute. For this example, it's the "Contextual tool area", whose ID is "DOCUMENT_UPPER_ACTION".

Filter
The filter value configures the conditions that must be met for the button to be displayed.
Here, the filter defines that the document should be displayed only if it's decorated with the facet "folderish" (i.e. is not "folder" like). Then, thenot
icon is displayed.
For more advanced customization, you can see the following pages:

the filter section of the ,actionService page
the ,Extension Point actions page
the .Extension Point filters page

Edit the MANIFEST.MF file

To be detected by Nuxeo, you have to declare your new XML file ("action-contrib.xml") in the "MANIFEST.MF" file of the
"src/main/resource/META-INF" folder. Thus your new action is a real and genuine Nuxeo Component.

http://doc.nuxeo.com/x/GATF
https://doc.nuxeo.com/pages/createpage.action?spaceKey=CORG&title=TODO
https://doc.nuxeo.com/pages/createpage.action?spaceKey=CORG&title=TODO
https://doc.nuxeo.com/display/Studio/User+actions+categories
http://community.nuxeo.com/5.2/components/org.nuxeo.ecm.platform.actions.ActionService.html
http://explorer.nuxeo.org/nuxeo/site/distribution/current/viewExtensionPoint/org.nuxeo.ecm.platform.actions.ActionService--actions
http://explorer.nuxeo.org/nuxeo/site/distribution/current/viewExtensionPoint/org.nuxeo.ecm.platform.actions.ActionService--filters

 Nuxeo Enterprise Platform 5.4 Documentation

493
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

1.

2.

3.

4.

1.

To do so, edit the MANIFEST.MF file and add a new line with: .Nuxeo-Component: OSGI-INF/action-contrib.xml
In the end, and providing that you didn't add other contributions, your "MANIFEST.MF" file should contain:

Manifest-Version: 1.0
Bundle-ManifestVersion: 1
Bundle-Name: cookbook-action-bundle
Bundle-SymbolicName: org.nuxeo.cookbook.basic.action;singleton:=true
Bundle-Version: 0.0.1
Bundle-Vendor: Nuxeo
Nuxeo-Component: OSGI-INF/action-contrib.xml

Install and check the deployment of your action

To be sure that all of your tedious work is fruitful, you have to deploy your brand new bundle in a working Nuxeo application instance.

Build your bundle, using the following Command Line Interface (CLI):

$ mvn install

In the "/target" folder of your project, you get a JAR file whose name if formed like that: artifactId-1.0-SNAPSHOT.jar.
Copy your brand new jar into the sub-folder "nxserver/plugins/" of your nuxeo application's root folder:

under Windows, assuming that the nuxeo-distribution is installed at the location "C:\Nuxeo\", copy the jar in
"C:\Nuxeo\nxserver\plugins\";
under Linux, assuming that the nuxeo-distribution is installed at the location "/opt/nuxeo", copy the jar in
"/opt/nuxeo/nxserver/plugins".

Start your server using the "./nuxeoctl console" command

Check that your bundle is correctly deployed: check if its SymbolicName (as configured in the "/src/main/resources/META-INF") appears
in the logs. The logs are displayed:

in the console if you started your server using the "./nuxeoctl console"
in the file "server.log" located in the "log" folder of your Nuxeo server root folder.
This name is found in the list of the bundles deployed by Nuxeo in the very first lines of the logs, just after the line ended by "
Preprocessing order:".

Now you know that your bundle is correctly deployed and installed. You also need to check that it works.

1.

2.

3.

Formatting
The trickiest and most important part of a "MANIFEST.MF" file is its formatting. One mistake and the OSGi context can't be correctly
started, leading to unexpected issues and an unreachable bundle. Here are the three formatting rules to respect:

Each property name:
begins at the first character of the line;
ends with a colon without space between the name of the property and the colon itself.

Each value:
must be preceded by a space;
ends with a "end of line" with eventually a comma before it.

There MUST be an EMPTY LINE at the END OF THE FILE.

You can check the dedicated of the technical documentation for more information about the different waysStart and stop page
to start your server).

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

494
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

1.
2.
3.
4.

5.

In a browser, go to the URL .http://localhost:8080/nuxeo
Connect to your Nuxeo application with an existing user (default credentials are Administrator/Administrator (login/password).
Go to a workspace.
Open or create a document.

You should see our image () displayed in the "Contextual Tool Area" as shown below.

Move the pointer over the icon.
You should have the following tooltip:

http://doc.nuxeo.com/x/GATF
http://localhost:8080/nuxeo

 Nuxeo Enterprise Platform 5.4 Documentation

495
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

5.

Click on your brand new and beautiful action icon.
The following page is displayed (note that "Actions in Nuxeo" is our document name):

Et voilà!

As said in the beginning of this recipe, if you have unexpected errors or Nuxeo Application behavior don't forget to check the and post aFAQ
comment about this recipe or about the cookbook if you want to!

Drag and Drop Service for Content Capture (HTML5-based)
Drag and Drop from the Desktop to Nuxeo HTML UI has been available for a long time using a browser plugin.

Starting with Nuxeo 5.4.2, you can now use the native HTML5 Drag and Drop features on recent browsers (Firefox 3.6+, Google Chrome 9+,
Safari 5+).

This new Drag and Drop import model is pluggable so you can adapt the import behavior to your custom needs.

How to use it

Selecting the DropZone

If you drag some files from the Desktop to the Nuxeo WebUI, the possible DropZones will be highlighted.

In Nuxeo DM there are 5 different DropZones (depending on the page):

ContentView: the content listing for a folderish Document

Clipboard_CLIPBOARD: the user's Clipboard

Clipboard_DEFAULT: the user's Worklist

mainBlob: the main attachment of the current Document

otherBlobs: additional attachments of the current Document

http://doc.nuxeo.com/x/GATF
http://doc.nuxeo.com/display/KB/Nuxeo+Technical+Knowledge+Base+%28FAQ%29

 Nuxeo Enterprise Platform 5.4 Documentation

496
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

Depending on the DropZone you select, the import action will be different:

ContentView: create Documents from files in the current container

Clipboard: create Documents from files in the user's personal workspaces and add them to the clipboard

mainBlob: attach a file to the document

otherBlobs: attach file(s) as additional files in the document

Default mode vs advanced mode

In the default mode the file you drop will be automatically uploaded and imported into the Document repository.

By using the advanced mode you can have more control over the import process:

you can do several file imports but still keep all files part of the same batch,

you can select the operation chain that will be executed.

To trigger the extended mode, just maintain the drag over the DropZone for more than 2.5 seconds: the drop zone will be highlighted in red
indicating you are now in extended mode.

How to customize it

Defining a new DropZone

You can very simply define a new DropZone in your pages; you simply need to add an HTML element (like a div) which:

has a unique id,

has the 'dropzone' CSS class,

has a context attribute.

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

497
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

<div id="myDropZone" class="dropzone" context="myDropZone"> ... </div>

Associating Operation Chains

Each dropzone context is associated with a set of Content Automation Operations or Operation Chains.

This association is configured via the action service:

<action id="Chain.FileManager.ImportInSeam"
 link="" order="10" label="label.smart.import"
 help="desc.smart.import.file">
 <category>ContentView</category>
 <filter-id>create</filter-id>
</action>

Where:

id is the Operation or the Operation Chain identifier
(for Operation Chains, append Chain. as a prefix for id)

category represents the dropzone context

filter / filter-id are the filter used to define if operation should be available in a given context

link points to a page that can be used to collect parameters for the Operation chain

The Operation or Chain that will be called for the import will receive:

as input: a BlobList representing the files that have been uploaded

as context: the current page context

typically : { currentDocument : '#{currentDocument.id}',
currentDomain : '#{currentDomain.id}',
currentWorkspace : '#{currentWorkspace.id}',
conversationId : '#{org.jboss.seam.core.manager.currentConversationId}',
lang : '#{localeSelector.localeString}',
repository : '#{currentDocument.repositoryName}'};

as parameters: what has been collected by the form if any

The output of the chains does not really matter.

At some point, inside your Operation chain you may need to access Seam Context.

For that, new Operation where introduced:

Seam.RunOperation: that can run an operation or a chain in the Seam context

For example, if you want to get available actions via the "Actions.GET" operation, but want to leverage seam context for actions filters:

Drop zone declaration

Binding an operation chain to a drop zone

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

498
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

<chain id="SeamActions.GET">
 <operation id="Seam.RunOperation">
 <param type="string" name="id">Actions.GET</param>
 </operation>
</chain>

Seam.InitContext / Seam.DestroyContext : that can be used to initialize / destroy seam context

<chain id="ImportClipboard">
 <operation id="Seam.InitContext" />
 <operation id="UserWorkspace.CreateDocumentFromBlob" />
 <operation id="Document.Save"/>
 <operation id="Seam.AddToClipboard"/>
 <operation id="Seam.DestroyContext" />
</chain>

Parameters management

In some cases, you may want to user to provide some parameters via a form associated to the import operation he wants to run.

For that, you can use the the link attribute of the action used to bind your operation chain to a dropzone.
This URL will be used to display your form within an IFRAME inside the default import UI.

In order to send the collected parameters to the import wizard, you should call a JavaScript function inside the parent frame:

window.parent.dndFormFunctionCB(collectedData);

where collectedData is a JavaScript object that will then be sent (via JSON) as parameter of the Operation call.

In the default JSF WebApp you can have a look at DndFormActionBean and dndFormCollector.xhtml.

Contributing to Nuxeo
Founded on the principles of open source, Nuxeo is passionate about community: the ecosystem of our community users, customers and
partners who run their critical content-centric applications on our platform. Open source ensures that these external stakeholders have full
visibility into not only the source code but the roadmap and ongoing commitment to standards and platforms. Customers, integrators,
contributors and our own developers come together to share ideas, integrations and code to deliver value to the larger user base.

Nuxeo development is fully transparent:

Important development choices can be followed on through the . Comments are more than welcome!tech reports
Any commit in the code can be followed on and on Nuxeo GitHub repositories ecm-checkins@lists.nuxeo.com,
Any evolution and bug fixing is tracked on ,JIRA
Quality of the product development can be monitored on and our Jenkins Continuous Integration site SonarQube Quality Assurance

.site

Nuxeo is always happy when someone offers to help in the improvement of the product, whether it is for documentation, testing, fixing a bug,
suggesting functional improvement or contributing totally new modules. To maintain the quality of such an open development process, Nuxeo
has set up a few strict rules that a Nuxeo community member should follow to be able to contribute.

Running an operation in Seam Context

Manual Seam context management

Calling back the import wizard

http://doc.nuxeo.com/x/GATF
http://www.nuxeo.com/media-center/blog-tag/techreport/
http://nuxeo.github.io/
http://jira.nuxeo.com/
http://qa.nuxeo.org/
https://sonar.nuxeo.org/dashboard/index/org.nuxeo:nuxeo-ecm:master
https://sonar.nuxeo.org/dashboard/index/org.nuxeo:nuxeo-ecm:master

 Nuxeo Enterprise Platform 5.4 Documentation

499
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

1.

2.

3.
4.
5.

1.

2.
3.

1.
2.

3.

There will be a "contributions portal" in the future; until then, this page explains the process that should be respected.

Before describing this process, here are a few points that are the basis of the Nuxeo development process and that should always be kept in
mind.

Any evolution in Nuxeo sources should be matched with a JIRA issue (or corresponding product http://jira.nuxeo.com/browse/NXP, N
, , ...).XMOB NXIDE NXBT

Any code evolution must be documented, in the English language.
Any new feature, even a low-level one, must be unit-tested.
Any new feature must be implemented respecting usual Nuxeo software design, leveraging services, not putting business logic in
Seam components. A bad design code could be rejected.

Translations

Nuxeo labels are stored in ASCII files. We use the encoding for non ASCII files (like \u00e9 for é). You have two different options. See UTF-8
 for more details.How to Translate the Nuxeo Platform

With Crowdin (non English translations)

Join the Nuxeo translation group of your choice at . Pick a language you want to translate and start bycrowdin.net/project/nuxeo
clicking “translate”.
In the Crowdin translation view you will find all the phrases to translate to the left. (To view only the ones that still need translation,
use the “missing translations” filter.)
Click on a phrase you want to translate. You see the original phrase in the top, and a box to fill out your translation beneath.
Enter the translation and by clicking “save”, and optionally, if you're a proofreader, you can approve the translation.
Contact one or several of the Crowdin project managers to .be credited for your contribution

Without Crowdin (English translations)

For now, English translations are managed only on GitHub. Looking at the file at can help youreference messages.properties
understand in which GitHub repository or module the original translation is. For instance, look for the following sample lines:

DO NOT EDIT FOLLOWING LINE
Translations from
./nuxeo/nuxeo-features/nuxeo-platform-lang/src/main/resources/web/nuxeo.war/WE
B-INF/classes/messages_en_US.properties

[...]

DO NOT EDIT FOLLOWING LINE
Translations from
./nuxeo/addons/nuxeo-agenda/src/main/resources/OSGI-INF/l10n/messages_en_US.pr
operties

[...]

If the module is under the directory, it will be in a specific GitHub repository. Otherwise, it will be in the addons main Nuxeo
.repository

Use any standard Java i18n tool to edit the files.
Make a pull-request on .GitHub

Documentation

Contribution is welcome both for technical (books and guides, FAQ, tutorials) and functional documentation. Ask a contributor account for http
 on , or on .://doc.nuxeo.com Nuxeo Answers the nuxeo-dev mailing list the Nuxeo Google+ community

Testing

Testing is always welcome, particularly when Nuxeo submits a new Fast Track version of its products. As our products are easily
downloadable, it doesn't require any specific development skill.

Download the version you want to test, set it up.
Get and read the for the selected distribution and add-ons.user guide

http://doc.nuxeo.com/x/GATF
http://jira.nuxeo.com/browse/NXP,
https://jira.nuxeo.com/browse/NXMOB
https://jira.nuxeo.com/browse/NXMOB
https://jira.nuxeo.com/browse/NXIDE
https://jira.nuxeo.com/browse/NXBT
http://www.utf8-chartable.de/
https://doc.nuxeo.com/display/NXDOC/How+to+Translate+the+Nuxeo+Platform
http://crowdin.net/project/nuxeo
https://github.com/nuxeo/nuxeo-platform-lang-ext/blob/master/CREDITS.txt
https://github.com/nuxeo/nuxeo-platform-lang-ext/blob/master/src/main/resources/crowdin/messages.properties
https://github.com/nuxeo/nuxeo
https://github.com/nuxeo/nuxeo
https://github.com/nuxeo/
http://doc.nuxeo.com/
http://doc.nuxeo.com/
https://answers.nuxeo.com/
https://plus.google.com/communities/117410347547563540242
https://doc.nuxeo.com/display/USERDOC

 Nuxeo Enterprise Platform 5.4 Documentation

500
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

3.

1.
2.

3.

4.
5.
6.

7.
8.
9.

1.

2.

3.
4.

5.

6.
7.

1.
2.
3.
4.
5.
6.
7.
8.
9.

For any bug you detect, ask for a confirmation on , , specifying the version of the product, theNuxeo Answers create a JIRA ticket
environment (OS, browser, ...), the conditions and the reproduction steps. Before each release every ticket is read and depending on
its severity, fixed before the release or postponed.

Improvements and Bug Fixes

Improving a module is always welcome and is carefully managed by Nuxeo developers. Process is through a JIRA "Contribution" ticket and G
. Depending on the nature of your changes, you might be asked to sign and return the . This is mandatory foritHub Contributor Agreement

everything that isn't minor improvement or bugfix. You may get credentials to commit directly when you get used to submitting pull requests
and that those one respect the framework logic and quality rules.

Create a that will hold a description of your improvements, functionally and technically.JIRA "Contribution" ticket
Send an email to , or post on , to notify the community as well as Nuxeothe nuxeo-dev mailing list the Nuxeo Google+ community
developers.
Nuxeo will approve your specifications (or ask you some more information/change) and will give you recommendations. The JIRA
issue will be in "specApproved" state.
Read the .Coding and design guidelines
Fork the project on .GitHub
Do your modifications in a new branch named "FEATURE-the_Jira_issue-a_short_description", respecting the coding and design
guidelines. Be sure it doesn't break existing unit tests.
Send a pull-request.
In JIRA, set the ticket to "devReview" state and give a link to your pull request.
Finally, we can ask for some changes, putting comments on your code, then your branch will be merged by a Nuxeo developer.

New Modules

Nuxeo is highly modularized and as a consequence, it is totally possible to develop a new feature that will be deeply mixed with existing
interface. Our main recommendation, among respecting coding rules and design, is to respect the usual code layout: core, API, facade, web,
… If you have such a project, Nuxeo will be glad to help you designing your module, and to provide a GitHub repository, aside a web page
(Wiki) and a JIRA project for the visibility of your development.

Start by an introductory email in the mailing list, explaining purpose of the new module you want to develop (BEFORE developing it)
and how you think of doing it or how you did it (although it is always better to contact the list before).
After a few exchanges in the mailing list, return the signed. Nuxeo will then add you to the GitHubContributor Agreement
organization and give you rights to commit in a new GitHub repository.
Read and respect the .Coding and design guidelines
Commit your development regularly (meaning don't wait to finish everything: on the contrary commit each of your developments on a
very atomic mode, mentioning purpose of your commit in JIRA (take it as an advice more than a rule).
Unit tests are mandatory and Test Driven Development is strongly encouraged. Functional tests could also be integrated. We'll put
your module under continuous integration, if the quality of the code respects Nuxeo criteria.
You can ask for a code review in the .nuxeo-dev mailing list
Package your plugin as a Nuxeo Package, if you want it to be on Plus it will be much easier for people to installNuxeo Marketplace
it.

In addition to code conventions and development good practices above-mentioned, wen creating a new module you should also take the
following recommendations into considerations:

Align your code on a recent released version or on the latest development version.
Provide a (well indented, no duplication, inheriting nuxeo-ecm POM, ...).clean POM
If needed, provide a list of the artifacts (libraries) or Public Maven repositories that should be added to the Nuxeo Maven repository to
be able to build.
Avoid embedded libraries.
Avoid introducing new libraries if the equivalent already exists in Nuxeo.

Not using GitHub?

You can still contribute patches even without using GitHub:

Create a describing the problem and what you plan to do (or what you did, if it comes after).JIRA ticket of type "Contribution"
Send an email to , or post on , to notify the community.the nuxeo-dev mailing list the Nuxeo Google+ community
Read the .Coding and design guidelines
Fork the "master" branch of the sub-project you want to patch.
Make your modifications, respecting the , and check that they don't break existing unit tests.coding and design guidelines
Create a patch file and attach it to the JIRA ticket you created.
Send an email to to notify the community of your contribution.nuxeo-dev mailing list
The patch will either be validated or you will receive feedback with guidance to complete it.
The patch will be committed by a Nuxeo developer.

Contributor Agreement

http://doc.nuxeo.com/x/GATF
https://answers.nuxeo.com/
http://jira.nuxeo.com/
https://github.com/nuxeo
https://github.com/nuxeo
http://jira.nuxeo.com/browse/NXP
https://plus.google.com/communities/117410347547563540242
https://doc.nuxeo.com/display/CORG/Coding+and+Design+Guidelines
http://help.github.com/fork-a-repo/
https://github.com/nuxeo/
http://help.github.com/send-pull-requests/
https://doc.nuxeo.com/display/CORG/Coding+and+Design+Guidelines
https://doc.nuxeo.com/display/NXDOC/Creating+Nuxeo+Packages
https://connect.nuxeo.com/nuxeo/site/marketplace/product/all
http://jira.nuxeo.com/browse/NXP
https://plus.google.com/communities/117410347547563540242
https://doc.nuxeo.com/display/CORG/Coding+and+Design+Guidelines
https://doc.nuxeo.com/display/CORG/Coding+and+Design+Guidelines

 Nuxeo Enterprise Platform 5.4 Documentation

501
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

Click (PDF).here to download the Nuxeo Contributor Agreement

For small patches and minimal changes, one doesn't need a contributor agreement, as it cannot be considered original work with a separate
license and copyright. The contributor agreement is for folks who contribute non-trivial amounts of code (at least one new file for instance).

The signature of the Contributor Agreement is mandatory for a GitHub Pull-Request being accepted. You will be prompted for the signature in
the PR comments or you can browse https://cla-assistant.io/nuxeo/nuxeo

Translations
With
Crowdin
(non English
translations)
Without
Crowdin
(English
translations)

Documentation
Testing
Improvements and
Bug Fixes
New Modules
Not using GitHub?
Contributor
Agreement

Is source code needed?
Getting the Nuxeo source code is not needed to create applications on top of it. You should be able to create your own customizations of the
Nuxeo Platform or default applications (DM, DAM, etc.) by creating extensions (also known as plugins), without changing the Nuxeo code.

The advantages of this approach are substantial:

by running stock Nuxeo EP code + your own customization, it's much easier to pinpoint issues when then happen, and facilitates greatly
the support process,
upgrading to a newer version of Nuxeo EP is much easier,
you don't need to understand the detailed internal and low level architecture of the Nuxeo Platform, only the big picture + the API you will
need for your project,
if forces the Nuxeo developers to think about extensibility, leading to a cleaner architecture.

Of course, if you are an advanced developer, you may want to join the Nuxeo community as a contributor, in which case you will want to look at
the , in particular its chapter.Nuxeo Core Developer Guide Getting the Nuxeo Source Code

You may also want to have a look at this guide if, as a technology evaluator, you want to get a clearer picture of how Nuxeo EP is developed and
what processes are in place to ensure the highest quality level.

Creating Packages for the Marketplace
The artifacts managed by the Update Center are called . A package contains usually new features or patches along with installationpackages
instructions. Packages can be downloaded from a remote repository and then installed on a running Nuxeo and possibly uninstalled later.

Some packages require the server to be restarted after the install (or uninstall). Each package provides a description of the modifications that
should be done on the running platform in order to install a package. We will call " " each atomic instruction of an install or uninstallcommand
process. When Commands are revertible - so that for any command execution there must be an inverse command that can be executed to
rollback the modification made by the first command. When designing update packages you must ensure the installation is revertible if needed.

The rollback of an installation is done either when the installation fails (in the middle of the install process), either if the user wants to uninstall the
package.

In this chapter we will discuss about the package format, package execution and rollback.

Package Format

A package is assembled as a ZIP file that contains the bundles, configuration files or libraries you want to install, along with some special files that
describe the install process.

Here is a list of the special files (you should avoid to use these file names for installable resources)

package.xml - the package descriptor describing package metadata, dependencies and custom handlers to be used when installing.
See for more details on the file format.Package Manifest
install.xml - a file containing the install instructions. There are two possible formats for this file: either an XML package command file, or
an ant script to be used to install the package. Using ant is discouraged, you should envisage to use the package command to describe

http://doc.nuxeo.com/x/GATF
https://doc.nuxeo.com/download/attachments/4687444/Nuxeo-Contributor-Agreement.pdf?version=3&modificationDate=1423579181502&api=v2
https://cla-assistant.io/nuxeo/nuxeo
https://doc.nuxeo.com/display/CORG
https://doc.nuxeo.com/display/CORG/Getting+the+Nuxeo+Source+Code

 Nuxeo Enterprise Platform 5.4 Documentation

502
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

1.
2.

3.

an installation rather than ant since rollback is ensured to be safe.
See for more details on the commands file format.Scripting Commands
uninstall.xml - a file containing the uninstall instructions. When using to describe the install process this file will becommands
automatically generated (so you don't need to write it). When using ant for the install you must write the uninstall ant file too.
install.properties - a Java property file containing user preferences (if any was specified during the install wizard). This file
is automatically generated by the installer.
backup - a directory created by the install process (when using to describe the install) to backup the existing files that werecommands
modified. The content of this directory will be used by the rollback process to revert changes.
See for more details on rollback.Scripting Commands
license.txt - a text file containing the license of the software you want to install. This file is optional.
content.html - a file containing an HTML description of you package. This file can use references to resources (such as images) located
in the package zip - for example you may want to display a set of screenshots for the new feature installed by the package. This file is
optional.
See for more details on how to write your package web page.Package Web Page
forms - a directory containing custom wizard form definitions. This directory and all the files inside are optional.
See for more details on how to contribute wizard forms.Wizard Forms
There are three type of wizard forms you can contribute:

install.xml - describe install forms (i.e. forms added to the install wizard for packages that needs user parametrization)
uninstall.xml - uninstall forms (i.e. forms added to the uninstall wizard for packages that needs user parametrization)
validation.xml -validation forms (i.e. forms used by the install validator if any is needed)

Apart these special files you can put anything inside a package (web resources, jars, Java or Groovy classes etc.). It is recommended to group
your additional resources in sub directories to keep a clean structure for your package.

You can see that most of the files listed above are optional or generated. So for a minimal package you will only need 2 files: the anpackage.xml
d the file.install.xml

The Package Metadata

The package metadata is stored in file. Here is the list of properties defining a package:package.xml

name: the package name. The allowed characters are the ones allowed for Java identifiers plus the dash - character.
Example: nuxeo-automation-core
version: the package version. Apart the tree digit fields separated by dots versions may contain a trailing classifier separated by a
dash. Examples: 1.2.3-SNAPSHOT, 1.2, 3, 0.1.0.
id: the package unique identifier. This is automatically generated from the and the as follows: name-version.name version
Example: nuxeo-automation-core-5.3.2
type: the package type. One of: , , or .studio hotfix addon
dependencies: a list of other packages that are required by this package. The dependencies are expressed as packageId:version_range
 where version_range is a string of one or two versions separated by a colon : character.
Example: nuxeo-core:5.3.0 - this means any version of nuxeo-core greater or equals to 5.3.0. Or: nuxeo-core:5.3.0:5.3.2 - any version of
nuxeo-core greater or equals than 5.3.0 and less or equal than 5.3.2.
platforms: a list of supported platform identifiers. Examples: dm-5.3.2, dam-5.3.2.
title: the package title to be displayed to the user.
description: a short description of the package
classifier: the package classifier if any. (You can use it to put tags on the package)
vendor: the identifier of the package vendor.
home-page: an URL to the home page of the package (or documentation) if any.
installer: a custom Install Task class that will handle the install process. If not specified the default implementation (which is using
commands) will be used.
uninstaller: a custom Uninstall Task that will handle the uninstall process. If not specified the default implementation (which is using
commands) will be used.
validator: a custom validator class. By default no validator exists. You can implement a validator to be able to test your installation form
the Web Interface.
NuxeoValidationState: state of Nuxeo's validation process. One of: , , , .none inprocess primary_validation nuxeo_certified
ProductionState: One of: , , .proto testing production_ready

For more informations on the package properties and the XML format see .Package Manifest

The Install Process

Packages are fetched from a remote repository and cached locally. Once they are cached they can be installed. Fetching a package and putting it
into the local cache is transparent to the user - this is done automatically when a user enters a package to see the details about the package.

When saved to the local file system the packages are unzipped - so they will be cached locally as directories. Once a package is cached locally it
can be installed by the user. When installing a package the package will be first validated - to check if it can be safely installed on the user
platform. If this check fails the installation is aborted. If there are warnings - the user should choose if wants to continue or not.

After validating the package an install wizard will be displayed to the user. The wizard will usually show the following pages:

Package license, if any is specified.
Custom install forms, if contributed by the package.

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

503
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

3.

4.

Summary of things that will be installed - this is the last step the user can abort the installation. When clicking install the install process
will start.
An install result page. This is either a page of failure either a page of success. In case of success, if the package requires restarting the
server then the user is asked whether to restart now or later the server.

Here is a pseudo-code describing how installation is drived by the wizard:

LocalPackage pkg = service.getPackage("package_to_install");

Task task = pkg.getInstallTask();

ValidationStatus status = task.validate();
if (status.hasErrors()) {
 // install task cannot be run. show errors to the user
} else if(status.hasWarnings()) {
 // task can be run but there are warnings. show warnings to the user and let it
decide whether or not to run the install task
} else {
 try {
 task.run(userPrefs);
 } catch (Throwabe t) {
 // if an error occurred do the rollback.
 task.rollback();
 }
}
// show install result to the user.
if (task.isRestartRequired()) {
 // ask user to restart
}

Using Ant to Install

When using ant you must define two ant scripts: the and files.install.xml uninstall.xml

Each of these scripts must have at least 2 ant targets. The target of the install.xml script will be used to execute the installation. The targetdefault
name is not important - it may have any name but should be the default target. The other required target of the script is a target named wrollback
hich will be called to do the rollback if anything went wrong during the installation (i.e. during the execution of the default target).

The same rule applies for the uninstall.xml script. This ant script must have at least 2 targets: a default one which will be called to do the uninstall
and another one named which will be used to perform the rollback if anything went wrong during the uninstall execution.rollback

There is a set of useful properties that will be injected in the ant context and thus are available in ant scripts. See below the list of these
properties.

Using Commands to Install

XML Commands are the default way to describe the installation instructions. The advantage of using commands is that the rollback and uninstall
script will be automatically generated - you don't need to code it yourself. Also, you can control commands enabling or validation using EL
expressions depending on the state of the target platform were the install is executed.

See for more details on using commands .Scripting Commands

As in ant scripts there is a set of properties you can use in command files to parametrize your commands. Below is the list of available properties.

Context Properties Available in Install Scripts

Here is the list of properties available to install scripts:

all the system properties in the running JVM.

Using ant is not recommended since a safe rollback is difficult to handle.

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

504
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

package.id: The Package identifier.
package.name: The Package name.
package.version: The Package version.
package.root: The root folder of the package (the folder containing the exploded zip).
env.home: The Nuxeo Runtime Environment home. ($NUXEO_HOME/server/default/data/NXRuntime on JBoss,
$NUXEO_HOME/nxserver on Tomcat).
env.ear: JBoss only. The nuxeo.ear directory ($NUXEO_HOME/server/default/deploy/nuxeo.ear).
env.lib: The Nuxeo lib directory (nuxeo.ear/lib on JBoss, $NUXEO_HOME/nxserver/lib on Tomcat).
env.syslib: The host application lib directory ($NUXEO_HOME/lib).
env.bundles: The Nuxeo bundles directory (nuxeo.ear/bundles on JBoss, $NUXEO_HOME/nxserver/bundles on Tomcat).
env.config: The Nuxeo directory (nuxeo.ear/config on JBoss, $NUXEO_HOME/nxserver/config on Tomcat).config
env.hostapp.name: The host application name (Tomcat or JBoss)
env.hostapp.version: The host application version (e.g. Tomcat or JBoss version)
sys.timestamp: The timestamp when the install task was created - a string in the format "yyMMddHHmmss".

Package Manifest

Let's look at a minimal example of package.xml file:

<package type="addon" name="nuxeo-automation" version="5.3.2">
 <title>Nuxeo Automation</title>
 <description>A service that enables building complex business logic on top of Nuxeo
services
 using scriptable operation chains</description>
 <platforms>
 <platform>dm-5.3.2</platform>
 <platform>dam-5.3.2</platform>
 </platforms>
</package>

This is a minimal package manifest. It is defining a package nuxeo-automation at version 5.3.2 and of type add-on.
The package can be installed on platforms dm-5.3.2 and dam-5.3.2.

Also, the package title and description that should be used by the UI are specified vy the title and description elements.

Lets look at the full version of the same package manifest:

TODO: replace fixed versions in platforms with range of versions.

Note that the package names used in these examples are fictional.

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

505
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

<package type="addon" name="nuxeo-automation" version="5.3.2">
 <title>Nuxeo Automation</title>
 <description>A service that enables building complex business logic on top of Nuxeo
services
 using scriptable operation chains</description>
 <classifier>Open Source</classifier>
 <home-page>http://some.host.com/mypage</home-page>
 <vendor>Nuxeo</vendor>
 <installer class="org.nuxeo.connect.update.impl.task.InstallTask" restart="true"/>
 <uninstaller class="org.nuxeo.connect.update.impl.task.UninstallTask"
restart="true"/>
 <validator class="org.nuxeo.MyValidator"/>
 <platforms>
 <platform>dm-5.3.2</platform>
 <platform>dam-5.3.2</platform>
 </platforms>
 <dependencies>
 <package>nuxeo-core:5.3.1:5.3.2</package>
 <package>nuxeo-runtime:5.3.1</package>
 </dependencies>
 <vendor>YourCompany</vendor>
 <supported>false</supported>
 <hotreload-support>true</hotreload-support>

<require-terms-and-conditions-acceptance>false</require-terms-and-conditions-acceptanc
e>
 <NuxeoValidationState>primary_validation</NuxeoValidationState>
 <ProductionState>production_ready</ProductionState>
 <license>LGPL</license>
 <license-url>http://www.gnu.org/licenses/lgpl.html</license-url>
</package>

You can see the usage of installer and uninstaller elements. These are used to specify the task implementation to be used when installing and
uninstalling.
If these elements are not specified the default values will be used. The default values are

 <installer class="org.nuxeo.connect.update.impl.task.InstallTask" restart="false"/>
 <uninstaller class="org.nuxeo.connect.update.impl.task.UninstallTask"
restart="false"/>

If you specify only one of class or restart attribute the other attribute will take the default value.

See for an explanation of each package property.Creating Packages for the Marketplace

Scripting Commands

Scripting commands can be used to define the way an installation is done. Usually, when installing a new component you need to execute a
limited set of commands like copy, delete, patch etc.

The Package Scripting Commands provides a easy to use format for defining the install logic of a package and more, each built-in command is
providing safe rollback in case of install failures.

When writing your installation using scripting commands you don't need to write the uninstall script. This script will be automatically generated
after the installation is successfully done.

Lets look at the following install.xml file:

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

506
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

<install>
 <copy file="${package.root}/myplugin.jar" tofile="${env.bundles}"
fail="tofile.isFile()" />
 <copy file="${package.root}/my.properties" tofile="${env.config}/my.properties"
 ignore="Platform.isJBoss()" />
 <copy file="${package.root}/mylib-1.2.jar"
tofile="${env.lib}/mylib-{version:.*}.jar"
 ignore="Version.isGreaterOrEqual(version, \"1.2\")" />
 <deploy file="${env.bundles}/my-plugin.jar"/>
 <reload-core/>
</install>

You can see the file is using contextual variables as . etc. See for the complete list of context variables.env.bundles Creating Nuxeo Packages

Lets take each command and see what will be executed:

 <copy file="${package.root}/myplugin.jar" tofile="${env.bundles}"
 fail="tofile.isFile()" />

The first copy command is copying the file named myplugin.jar from the package root into the Nuxeo bundles directory (by preserving the file
name). You can see a attribute was used to put a guard on this command. The guard says that the command should fail if the target file existsfail
(i.e a JAR with the same name already exists in the Nuxeo bundles directory). See below in section for more details on usingGuard Attributes
guards.

The second copy command

 <copy file="${package.root}/my.properties" tofile="${env.config}/my.properties"
 ignore="Platform.isJBoss()" />

will copy the my.properties file from the package root to the Nuxeo configuration directory but only if the current platform distribution is not based
on JBoss.
You can see here the usage of another type of guard parameter: .ignore

The third copy command is a bit more complicated:

 <copy file="${package.root}/mylib-1.2.jar"
tofile="${env.lib}/mylib-{version:.*}.jar"
 ignore="Version.isGreaterOrEqual(version, \"1.2\")" />

This command is used to upgrade an existing library. It is checking if the version of the library is an old version and should be replaced. If it is the
same or a newer version the command will be ignored.

You notice the usage of regular expression variables. The tofile value is using an expression of the form {var:regex}. This is a file pattern that
allow to search for an existing file that match the given pattern. If a matching file is found the pattern portion of the file name will be extracted and
inserted into the EL context under the 'var' key.
If no matching file is found the command will fail.

So, in our case the first file that matches the name mylib-*.jar and is located in directory will be selected and the value that matched theenv.lib
pattern will be inserted into EL context under the name .version
That way we can use this variable in our ignore guard parameter. This will check the version of the file that matched to see if the upgrade should
be done or not.

The command will deploy (e.g. install) the specified bundle into the working Nuxeo Platform. The deploy is needed only if you don't wantdeploy
to restart the server after the install is done. If you skip the deployment command you need to restart the server to have your new bundle

http://doc.nuxeo.com/x/GATF
https://doc.nuxeo.com/display/NXDOC/Creating+Nuxeo+Packages

 Nuxeo Enterprise Platform 5.4 Documentation

507
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

deployed.

The is simply flushing any repository caches. This is useful if your new bundle is deploying new type of documents. In that case ifreload-core
you don't restart the server you need to flush the repository cache to have you new types working.

Guard Attributes

We've seen that there are two special attributes that can be used on any command:

fail: this is an EL expression that can be used to force command to fail in some circumstances.
ignore: this is an EL expression that can be used to avoid executing the command in some circumstances.

The variable available in EL context are:

Version: a version helper. See VersionHelper class for the list of all available methods.
Example: Version.isGreater(version, '1.0')
Platform: a platform helper that provides methods to check the type of the currently running Nuxeo Platform (name, version etc.).
Example: Platform.matches("dm-5.3.2"), Platform.isTomcat() etc.
Pattern Variables: as we seen variable used in file pattern matching are inserted into the EL context.
custom variables provided by each command. Each command should document which variables are provided.

Command Validation

Before running an installation the install commands are first validated, that means each command is tested in turn to see whether or not it could
be successfully executed. All potential failures are recorded into a validation status and displayed to the user. If blocking failures are discovered
the install will be aborted, otherwise if only are discovered the user is asked whether or not to continue the install. warnings

For example, a validation failure can occurs if a command is trying to upgrade a JAR that is newer than the one proposed by the command.

When validation failures occurs the installation is aborted - so nothing should be rollbacked since nothing was modified on the target platform. Of
course even is the validation is successful the install process may fail. In that case an automatic rollback of all modification is done. Lets see now
how the rollback is managed.

Command Rolback

Each command executed during an install is returning an oposite command if successful. The oposite command is designed to undo any
modification done by the originating command. The originating command is responsible to return an exact oposite command. All built-ins
commands are tested and are safe in generating the right rollback is needed to undo the command modifications. When you are contributing new
commands you must ensure the rollback is done right.

As an example of describing how a command should generate its rollback command I will take the built-in copy command. To simplify lets say the
copy command has a parameter, a parameter and an optional parameter.file tofile md5
When the copy command (lets name it copy1) is executed it will backup the file if any into let say , generate an md5 hash of thefileto backup_file

 content, and then copy the over the This command will generate a rollback command (lts name it copy2) that will have the followingfile file filteo.
arguments:

copy2.file = backup_file
copy2.tofile = copy1.tofile
copy2.md5 = md5(copy1.file)

The md5 parameter is used (if set) to test if the target file (of the copy) has the same md5 as the one specified in the command. If not then the
command will fail - since we cannot rollback a file over another one that was modified meanwhile.

This is the approach took by the copy command you can take any approach you want but in any case the command you implement must provide
a safe rollback command.

Here is a short pseudo-code of how the commands are executed (and rollback done if needed)

// execute each command in the install.xml file
for (Command cmd : commands) {
 Command rollbackCmd = cmd.execute(task, userPrefs);
 if (rollbackCmd != null) {
 log.addFirst(rollBackCommand);
 }
}

Note that the deploy wont't work for all bundles. Some bundles will need the server to be restarted.

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

508
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

So, each time a command is executed the oposite command is logged into an command list named .log

If any error occurs durring the execution of a command the logged commands are executed to do the rollback. If all the commands are
successfully executed then the command log is persisted to a file named . Of course this is the generated uninstall script.uninstall.xml

The Uninstall Script

Let see now what is the uninstall script generated by the install file described above. We will show only the first copy rollback command (since the
others are similar):

<uninstall>
 <copy file="path_to_package/backup/myplugin.jar"
tofile="path_to_bundles/myplugin.jar" md5="aaaa.." />
 ...
</uninstall>

You can see the uninstall script doesn't contains variables, neither guard attributes. This is normal since at instal time all variables were resolved
and replaced with their actual values. Also guard attributes are not useful at uninstall time since the install succeeded. Also, you can note an
additional attribute that represents the md5 hash of the file that has been copied at install time. The uninstall copy will succeed only if thismd5
md5 value is the same as the target file it is being to replace. The commands ignored at install time(due to a matching ignore attribute) will
obviously not recorded in the uninstall file.

The copy command is more complex but there are commands that are a lot more simpler to implement. For example the oposite of the reload-co
 is itself. There are cases when a command doesn't have an oposite - in that case you should return as the oposite command.re null

Implementing a Command

The built-ins commands provided by Nuxeo may not cover all of the install use cases. In that case you must implement your own command.

To implement you own command you must extend the class from org.nuxeo.ecm.platform:nuxeo-connect-updateAbstractCommand
(nuxeo-admin-center/nuxeo-connect-update in).http://hg.nuxeo.org/nuxeo/nuxeo-features/

Here is a simple example (the Delete command):

public class Delete extends AbstractCommand {

 public final static String ID = "delete";

 protected File file; // the file to restore

 protected String md5;

 public Delete() {
 super(ID);
 }

 public Delete(File file, String md5) {
 super(ID);
 this.file = file;
 this.md5 = md5;
 }

 protected void doValidate(Task task, ValidationStatus status) {
 if (file == null) {
 status.addError("Invalid delete syntax: No file specified");
 }
 }

Also, note that in the case that the copy command didn't overwrite any file the rollback command will be a delete command and not a
copy.

http://doc.nuxeo.com/x/GATF
http://hg.nuxeo.org/nuxeo/nuxeo-features/

 Nuxeo Enterprise Platform 5.4 Documentation

509
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

 protected Command doRun(Task task, Map<String, String> prefs)
 throws PackageException {
 try {
 File bak = IOUtils.backup(task.getPackage(), file);
 file.delete();
 return new Copy(bak, file, md5, false);
 } catch (Exception e) {
 throw new PackageException(
 "Failed to create backup when deleting: " + file.getName());
 }
 }

 public void readFrom(Element element) throws PackageException {
 String v = element.getAttribute("file");
 if (v.length() > 0) {
 FileRef ref = FileRef.newFileRef(v);
 ref.fillPatternVariables(guardVars);
 file = ref.getFile();
 guardVars.put("file", file);
 if (file.isDirectory()) {
 throw new PackageException("Cannot delete directories: "
 + file.getName());
 }
 }
 v = element.getAttribute("md5");
 if (v.length() > 0) {
 md5 = v;
 }
 }

 public void writeTo(XmlWriter writer) {
 writer.start(ID);
 if (file != null) {
 writer.attr("file", file.getAbsolutePath());
 }
 if (md5 != null) {
 writer.attr("md5", md5);
 }
 writer.end();
 }

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

510
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

}

You can see in that example there are four main methods to implement. Two are the XML serialization of the command, one is the command
validation (should check if all required attributes are set and the command is consistent), and the last one is the execution itself which should
return a valid rollback command.

To deploy your command you should put your class into the package (the command can be a Groovy class or a Java one). Then to invoke it just
use the full class name of your command as the element name in the XML. For example if the command file is commands/MyCommand.class
(relative to your package root) you can just use the following XML code:

<commands.MyCommand ... />

Built-in Commands

This is a list of all commands provided by Nuxeo:
Copy

Copy a file to a given destination. This command can be used to add new files or to upgrade existing files to a new version.

Usage:

<copy file="file_to_copy" tofile="destination"/>

Or

<copy file="file_to_copy" todir="destination_dir"/>

There is also a boolean attribute available than can be used to force command failure when overrite is false and the destination fileoverwrite
exists. Overwrite is by default false.

The tofile attribute will be injected as a File object in the EL context used by guards.

Parametrized Copy

Same as copy but the content of the copied file is generated using variable expansion based on user preferences (variables defined by the user
durring the install wizard).

Usage:

<pcopy file="file_to_copy_and_transform" tofile="destination"/>

Or

<pcopy file="file_to_copy_and_transform" todir="destination_dir"/>

Delete

Delete a file.

This command takes one argument which is the absolute path of the file to delete. The argument name is .file

An optional parameter generated for the uninstaller is the one which will be used to avoid inconsistent uninstalls.md5

The destination can be a file pattern.

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

511
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

Usage:

<delete file="file_to_delete"/>

Deploy

Start an OSGi bundle into Nuxeo Runtime. Needed when deploying a new bundle to Nuxeo without restarting the server. Note that not all bundles
can be deployed without restarting.

This command takes one argument which is the absolute path of the bundle to deploy. The argument name is .file

Usage:

<deploy file="file_to_deploy"/>

Undeploy

Stop an OSGI bundle that is deployed in the Nuxeo Runtime. Needed before removing a bundle from Nuxeo without restarting the servre.

This command takes one argument which is the absolute path of the bundle to undeploy. The argument name is .file

Usage:

<undeploy file="file_to_undeploy"/>

Reload-Core

Flush all repository caches. Should be used when new document types are contributed and no restart is wanted.

This command takes no arguments.

The oposite command is itself.

Usage:

<reload-core/>

Package Web Page

Wizard Forms

Package Example

The following example is imaginary - it is not a real Nuxeo update package. It's purpose is to be an example of a complex package installable on
a Nuxeo distribution.

In this example we will create a package to install Nuxeo Automation feature on a 5.3.2 version of Nuxeo DM.

What we want to install

Nuxeo Automation is composed of 3 Nuxeo bundles:

nuxeo-automation-core-5.3.2.jar
nuxeo-automation-server-5.3.2.jar
nuxeo-automation-jsf-5.3.2.jar

and one third party library:

mvel2-2.0.16.jar

This library is not existing on a 5.3.2 version of Nuxeo so we want to add it (not to upgrade it).

Directories delete are not allowed.

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

512
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

Also, for tomcat distributtions we need to deploy a mail.properties file in Nuxeo configuration directory. This file contains the SMTP configuration
needed by javax.mail. On JBoss we already have this configuration as a JBoss MBean. This configuration is required by the SendMail operation.
The configuration file is a Java property file and contains variables that will be substituted by the values entered by the user during the install
wizard.

Here is the parametrized mail.properties file we want to install:

mail.smtp.host=${mail.smtp.host}
mail.smtp.port=${mail.smtp.port}
mail.smtp.auth=true
mail.smtp.socketFactory.port=465
mail.smtp.socketFactory.class=javax.net.ssl.SSLSocketFactory
mail.smtp.socketFactory.fallback=false
mail.smtp.user=${mail.smtp.user}
mail.smtp.password=${mail.smtp.password}

The package structure

Here is the structure of our package:

nuxeo-automation-5.3.2.zip
 package.xml
 install.xml
 bundles/
 nuxeo-automation-core-5.3.2.jar
 nuxeo-automation-server-5.3.2.jar
 nuxeo-automation-jsf-5.3.2.jar
 lib/
 mvel2-2.0.16.jar
 config/
 mail.properties
 forms/
 install.xml

The package.xml

Here is our package manifest:

<package type="addon" name="nuxeo-automation" version="5.3.2">
 <title>Nuxeo Automation</title>
 <description>A service that enable building complex business logic on top of Nuxeo
services using scriptable operation chains</description>
 <vendor>Nuxeo</vendor>
 <classifier>Open Source</classifier>
 <home-page>https://doc.nuxeo.com/display/NXDOC/Content+Automation</home-page>
 <platforms>
 <platform>dm-5.3.2</platform>
 <platform>dam-5.3.2</platform>
 </platforms>
</package>

The install form

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

513
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

We need to define an additional page for the install wizard to ask for the properties needed to inject in the mail.properties file.

Here is the form definition we need

<forms>
 <form>
 <title>SMTP configuration</title>
 <description>Fill the SMTP configuration to be used by the SendMail operation. All
fields are required</description>
 <fields>
 <field name="mail.smtp.host" type="string" required="true">
 <label>Host</label>
 <value>smtp.gmail.com</value>
 </field>
 <field name="mail.smtp.port" type="integer" required="true">
 <label>Port</label>
 <value>465</value>
 </field>
 <field name="mail.smtp.user" type="string" required="true">
 <label>Username</label>
 </field>
 <field name="mail.smtp.password" type="password" required="true">
 <label>Password</label>
 </field>
 </fields>
 </form>
</forms>

The install.xml script

Here is the content of the install.xml file

<install>
 <!-- copy bundles -->
 <copy file="${package.root}/bundles/nuxeo-automation-core-5.3.2.jar"
tofile="${env.bundles}"/>
 <copy file="${package.root}/bundles/nuxeo-automation-jsf-5.3.2.jar"
tofile="${env.bundles}"/>
 <copy file="${package.root}/bundles/nuxeo-automation-server-5.3.2.jar"
tofile="${env.bundles}"/>
 <!-- copy libs -->
 <copy file="${package.root}/lib/mvel2-2.0.16.jar" tofile="${env.lib}"/>
 <!-- copy the parametrized mail.properties file -->
 <pcopy file="${package.root}/config/mail.properties" tofile="${env.config}"
ignore="Platform.isJBoss()" />
 <!-- now deploy copied bundle: we doesn't require a server restart -->
 <deploy file="${env.bundles}/nuxeo-automation-core-5.3.2.jar" />
 <deploy file="${env.bundles}/nuxeo-automation-server-5.3.2.jar" />
 <deploy file="${env.bundles}/nuxeo-automation-jsf-5.3.2.jar" />
</install>

You can see the mail.properties is not installed if we are installing the package on a JBoss based distribution.

Note that the field IDs in the form are the same as the variable keys we need to inject into the mail.properties file

http://doc.nuxeo.com/x/GATF

 Nuxeo Enterprise Platform 5.4 Documentation

514
Copyright © 2010-2016 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the .Nuxeo Documentation License page

Nuxeo Distributions

About Nuxeo Distributions

The module is used for packaging of the Nuxeo products: Nuxeo EP/DM with JBoss/Jetty/Tomcat, Nuxeo Shell, Nuxeonuxeo-distribution
Core Server, ...

With , you can any Nuxeo distribution we have published and much more: if you need to nuxeo-distribution build from Nuxeo sources assem
, you will find in , templates and samples on which to base your packaging.ble your own distribution nuxeo-distribution resources

Table of Content
Available installers

Available installers
By default, Nuxeo distributions are packaged as ZIP files.

Some Nuxeo distributions are also packaged with automated installers, in order to ease installation and follow the targeted OS standards, by
respecting the usual directory organization for instance, creating desktop shortcuts and menu items, tweaking environment properties, help
installing optional third-parties, ...
The available installers can be:

multi-OS installer (.jar, .exe, .app, .jnlp — coming soon),
Windows installer (.exe),
Linux Debian installer (.deb),
Red Hat Package manager (.rpm — not available for now),
Mac OS X disk image/application/package (.dmg/.app/.pkg — not available for now).

Any help about OS-specific cases, recommendations, contributions or feedbacks is very welcome. See forhttps://jira.nuxeo.com/browse/NXBT
issue management.

http://doc.nuxeo.com/x/GATF
https://doc.nuxeo.com/display/CORG/Compiling+Nuxeo+from+sources
https://doc.nuxeo.com/display/CORG/Creating+Your+Own+Distribution
https://doc.nuxeo.com/display/CORG/Creating+Your+Own+Distribution
https://doc.nuxeo.com/pages/createpage.action?spaceKey=NXDOC54&title=Windows+installer&linkCreation=true&fromPageId=8684742
https://doc.nuxeo.com/pages/createpage.action?spaceKey=NXDOC54&title=Debian+installer&linkCreation=true&fromPageId=8684742
https://jira.nuxeo.com/browse/NXBT

	Technical Documentation Center - Nuxeo Enterprise Platform 5.4
	Overview and Architecture
	Overview
	Architecture
	Architecture overview
	About the content repository
	VCS Architecture

	Platform features quick overview
	Component model overview
	API and connectors
	UI frameworks
	Deployment options
	Performance management for Nuxeo EP

	Installation and Administration
	Hardware and Software requirements
	Installation
	Install and set up related software
	Install the application as a Windows service
	Configuring your Nuxeo application as a daemon on Debian

	Setup
	Recommended configurations
	Configuration parameters index
	Configuration examples
	Configuration templates

	Database
	Configuring PostgreSQL
	Configuring Oracle
	Configuring MS SQL Server
	Connecting Nuxeo to the database

	Authentication, users and groups
	Using a LDAP directory
	Using CAS2 authentication
	Using OAuth
	Using Shibboleth

	HTTP and HTTPS reverse-proxy configuration
	Advanced configuration
	Adding custom templates
	JDBC
	VCS Configuration

	Server start and stop
	nuxeoctl and Control Panel usage

	Monitoring
	Nuxeo Shell (admin's best friend)
	Shell Command Index
	Built-in Commands
	File System Commands
	Nuxeo Server Commands
	Nuxeo Automation Commands
	Configuration Commands

	Shell Batch Mode

	Backup and restore
	Import a file system
	Upgrading your Nuxeo Version
	Upgrade to 5.4.2 with Oracle
	Upgrade from 5.3.2 to 5.4.0
	From the old workflow system to the new 5.4 workflow system
	Upgrade from 5.3.2 to 5.4.0 with JBoss 5

	Upgrade from 5.3.1 to 5.3.2
	Upgrade from 5.3.1 with MySQL to 5.3.2
	Upgrade from 5.3.0 to 5.3.1
	Upgrade from 5.1.6 with JCR + PostgreSQL to 5.2.0
	Upgrade from 5.1.2 to 5.1.3

	Customization and Development
	Learning to customize Nuxeo EP
	Document types
	Document, form and listing views
	Layouts (forms and views)
	Manage layouts
	Document layouts
	Layout display
	Standard widget types
	Custom templates
	Custom widget types
	Generic layout usage

	Content views
	Custom Page Providers
	Page Providers without Content Views

	Views on documents

	Versioning
	User Actions (links, buttons, icons, tabs)
	Events and Listeners
	Scheduling periodic events

	Tagging
	Directories and Vocabularies
	Adding custom LDAP fields to the UI
	Publisher service
	Querying and Searching
	NXQL
	Fulltext queries
	Advanced search
	Faceted Search
	Smart search

	Security Policy Service
	Nuxeo Theme engine
	Nuxeo UI Frameworks
	Seam and JSF webapp overview
	GWT Integration
	Extending The Shell
	Shell Features
	Shell Commands
	Shell Namespaces
	Shell Documentation

	WebEngine (JAX-RS)
	Session And Transaction Management
	WebEngine Tutorials
	Hello World
	Using FreeMarker Template Language (FTL)
	Web Object Model
	Working with Documents
	Module Extensibility
	Managing Links

	Nuxeo Android Connector
	Nuxeo Automation client
	Android Connector and Caching
	Android Connector additional Services
	DocumentProviders in Android Connector
	Android SDK Integration
	Nuxeo Layout in Android
	SDK provided base classes

	Nuxeo Flex Connector
	AMF Mapping in Nuxeo
	Build and deploy Nuxeo Flex Connect
	Using Flex Connector

	Extending Nuxeo
	The Nuxeo Plugin model
	Adding a new UI block in Nuxeo DM
	Making a connector
	Integrating with JBoss AOP
	Integrating with JPA

	Updating your application using the Admin Center (web interface)
	Register your Nuxeo instance
	Install a new package on your instance
	Semantic Entities Installation and Configuration

	Uninstall a package
	Update your instance with Studio configuration

	Using Nuxeo as a service platform
	ECM Services in Nuxeo EP
	WebServices
	Content Automation
	Operations Index
	Contributing an Operation
	Contributing an Operation Chain
	REST API
	REST Operation Filters
	Using the REST API - Examples
	PHP Automation Client
	Using a Python client
	Using cURL
	Using Java API
	Using Nuxeo Automation Client

	OpenSocial, OAuth and Nuxeo EP
	OpenSocial configuration

	Repository access
	CMIS for Nuxeo
	WebDAV
	WSS before Nuxeo 5.4.2

	Packaging
	Packaging from sources
	Packaging a Nuxeo plugin

	Navigation URLs
	Dev Cookbook
	How-to create an empty bundle
	How-to implement an Action

	Drag and Drop Service for Content Capture (HTML5-based)

	Contributing to Nuxeo
	Is source code needed?
	Creating Packages for the Marketplace
	Package Manifest
	Scripting Commands
	Package Web Page
	Wizard Forms
	Package Example

	Nuxeo Distributions
	Available installers

